namespace Eigen {
/** \page TutorialGeometry Tutorial 2/3 - Geometry
\ingroup Tutorial
\ref index "Overview"
| \ref TutorialCore "Core features"
| \b Geometry
| \ref TutorialAdvancedLinearAlgebra "Advanced linear algebra"
| \ref TutorialSparse "Sparse matrix"
In this tutorial chapter we will shortly introduce the many possibilities offered by the \ref Geometry_Module "geometry module",
namely 2D and 3D rotations and affine transformations.
\b Table \b of \b contents
- \ref TutorialGeoElementaryTransformations
- \ref TutorialGeoCommontransformationAPI
- \ref TutorialGeoTransform
- \ref TutorialGeoEulerAngles
Eigen's Geometry module provides two different kinds of geometric transformations:
- Abstract transformations, such as rotations (represented by \ref AngleAxis "angle and axis" or by a \ref Quaternion "quaternion"), \ref Translation "translations", \ref Scaling "scalings". These transformations are NOT represented as matrices, but you can nevertheless mix them with matrices and vectors in expressions, and convert them to matrices if you wish.
- Affine transformation matrices: see the Transform class. These are really matrices.
\note If you are working with OpenGL 4x4 matrices then Transform3f and Transform3d are what you want. Since Eigen defaults to column-major storage, you can directly use the Transform::data() method to pass your transformation matrix to OpenGL.
You can construct a Transform from an abstract transformation, like this:
\code
Transform t(AngleAxis(angle,axis));
\endcode
or like this:
\code
Transform t;
t = AngleAxis(angle,axis);
\endcode
But note that unfortunately, because of how C++ works, you can \b not do this:
\code
Transform t = AngleAxis(angle,axis);
\endcode
Transformation type | Typical initialization code |
\ref Rotation2D "2D rotation" from an angle | \code
Rotation2D rot2(angle_in_radian);\endcode |
3D rotation as an \ref AngleAxis "angle + axis" | \code
AngleAxis aa(angle_in_radian, Vector3f(ax,ay,az));\endcode |
3D rotation as a \ref Quaternion "quaternion" | \code
Quaternion q = AngleAxis(angle_in_radian, axis);\endcode |
N-D Scaling | \code
Scaling(sx, sy)
Scaling(sx, sy, sz)
Scaling(s)
Scaling(vecN)\endcode |
N-D Translation | \code
Translation(tx, ty)
Translation(tx, ty, tz)
Translation(s)
Translation(vecN)\endcode |
N-D \ref TutorialGeoTransform "Affine transformation" | \code
Transform t = concatenation_of_any_transformations;
Transform t = Translation3f(p) * AngleAxisf(a,axis) * Scaling3f(s);\endcode |
N-D Linear transformations \n
(pure rotations, \n scaling, etc.) | \code
Matrix t = concatenation_of_rotations_and_scalings;
Matrix t = Rotation2Df(a) * Scaling2f(s);
Matrix t = AngleAxisf(a,axis) * Scaling3f(s);\endcode |
Concatenation of two transformations | \code
gen1 * gen2;\endcode |
Apply the transformation to a vector | \code
vec2 = gen1 * vec1;\endcode |
Get the inverse of the transformation | \code
gen2 = gen1.inverse();\endcode |
Spherical interpolation \n (Rotation2D and Quaternion only) | \code
rot3 = rot1.slerp(alpha,rot2);\endcode |
Apply the transformation to a \b point | \code
VectorNf p1, p2;
p2 = t * p1;\endcode |
Apply the transformation to a \b vector | \code
VectorNf vec1, vec2;
vec2 = t.linear() * vec1;\endcode |
Apply a \em general transformation \n to a \b normal \b vector
(explanations) | \code
VectorNf n1, n2;
MatrixNf normalMatrix = t.linear().inverse().transpose();
n2 = (normalMatrix * n1).normalized();\endcode |
Apply a transformation with \em pure \em rotation \n to a \b normal \b vector
(no scaling, no shear) | \code
n2 = t.linear() * n1;\endcode |
OpenGL compatibility \b 3D | \code
glLoadMatrixf(t.data());\endcode |
OpenGL compatibility \b 2D | \code
Transform3f aux(Transform3f::Identity);
aux.linear().corner<2,2>(TopLeft) = t.linear();
aux.translation().start<2>() = t.translation();
glLoadMatrixf(aux.data());\endcode |
\b Component \b accessors
full read-write access to the internal matrix | \code
t.matrix() = matN1xN1; // N1 means N+1
matN1xN1 = t.matrix();
\endcode |
coefficient accessors | \code
t(i,j) = scalar; <=> t.matrix()(i,j) = scalar;
scalar = t(i,j); <=> scalar = t.matrix()(i,j);
\endcode |
translation part | \code
t.translation() = vecN;
vecN = t.translation();
\endcode |
linear part | \code
t.linear() = matNxN;
matNxN = t.linear();
\endcode |
extract the rotation matrix | \code
matNxN = t.extractRotation();
\endcode |
\b Transformation \b creation \n
While transformation objects can be created and updated concatenating elementary transformations,
the Transform class also features a procedural API:
| \b procedurale \b API | \b equivalent \b natural \b API |
Translation | \code
t.translate(Vector_(tx,ty,..));
t.pretranslate(Vector_(tx,ty,..));
\endcode | \code
t *= Translation_(tx,ty,..);
t = Translation_(tx,ty,..) * t;
\endcode |
\b Rotation \n In 2D and for the procedural API, any_rotation can also \n be an angle in radian | \code
t.rotate(any_rotation);
t.prerotate(any_rotation);
\endcode | \code
t *= any_rotation;
t = any_rotation * t;
\endcode |
Scaling | \code
t.scale(Vector_(sx,sy,..));
t.scale(s);
t.prescale(Vector_(sx,sy,..));
t.prescale(s);
\endcode | \code
t *= Scaling_(sx,sy,..);
t *= Scaling_(s);
t = Scaling_(sx,sy,..) * t;
t = Scaling_(s) * t;
\endcode |
Shear transformation \n ( \b 2D \b only ! ) | \code
t.shear(sx,sy);
t.preshear(sx,sy);
\endcode | |
Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples: