// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_sycl_broadcast #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; // Types used in tests: using TestTensor = Tensor; using TestTensorMap = TensorMap>; static void test_sycl_broadcast(){ cl::sycl::gpu_selector s; cl::sycl::queue q(s, [=](cl::sycl::exception_list l) { for (const auto& e : l) { try { std::rethrow_exception(e); } catch (cl::sycl::exception e) { std::cout << e.what() << std::endl; } } }); SyclDevice sycl_device(q); // BROADCAST test: array in_range = {{2, 3, 5, 7}}; array broadcasts = {{2, 3, 1, 4}}; array out_range; // = in_range * broadcasts for (size_t i = 0; i < out_range.size(); ++i) out_range[i] = in_range[i] * broadcasts[i]; Tensor input(in_range); Tensor output(out_range); for (int i = 0; i < input.size(); ++i) input(i) = static_cast(i); TensorMap gpu_in(input.data(), in_range); TensorMap gpu_out(output.data(), out_range); gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); sycl_device.deallocate(output.data()); for (size_t i = 0; i < in_range.size(); ++i) VERIFY_IS_EQUAL(output.dimension(i), out_range[i]); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 9; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 28; ++l) { VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), output(i,j,k,l)); } } } } printf("Broadcast Test Passed\n"); } void test_cxx11_tensor_sycl_broadcast() { CALL_SUBTEST(test_sycl_broadcast()); }