// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "quaternion_demo.h" #include "icosphere.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace Eigen; class FancySpheres { public: FancySpheres() { const int levels = 4; const float scale = 0.33; float radius = 100; std::vector parents; // leval 0 mCenters.push_back(Vector3f::Zero()); parents.push_back(-1); mRadii.push_back(radius); // generate level 1 using icosphere vertices radius *= 0.45; { float dist = mRadii[0]*0.9; for (int i=0; i<12; ++i) { mCenters.push_back(mIcoSphere.vertices()[i] * dist); mRadii.push_back(radius); parents.push_back(0); } } static const float angles [10] = { 0, 0, M_PI, 0.*M_PI, M_PI, 0.5*M_PI, M_PI, 1.*M_PI, M_PI, 1.5*M_PI }; // generate other levels int start = 1; for (int l=1; l mCenters; std::vector mRadii; IcoSphere mIcoSphere; }; // generic linear interpolation method template T lerp(float t, const T& a, const T& b) { return a*(1-t) + b*t; } // quaternion slerp template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b) { return a.slerp(t,b); } // linear interpolation of a frame using the type OrientationType // to perform the interpolation of the orientations template inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b) { return Frame(lerp(alpha,a.position,b.position), Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation)))); } template class EulerAngles { public: enum { Dim = 3 }; typedef _Scalar Scalar; typedef Matrix Matrix3; typedef Matrix Vector3; typedef Quaternion QuaternionType; protected: Vector3 m_angles; public: EulerAngles() {} inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} inline EulerAngles(const QuaternionType& q) { *this = q; } const Vector3& coeffs() const { return m_angles; } Vector3& coeffs() { return m_angles; } EulerAngles& operator=(const QuaternionType& q) { Matrix3 m = q.toRotationMatrix(); return *this = m; } EulerAngles& operator=(const Matrix3& m) { // mat = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy m_angles.coeffRef(1) = std::asin(m.coeff(0,2)); m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2)); m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0)); return *this; } Matrix3 toRotationMatrix(void) const { Vector3 c = m_angles.cwise().cos(); Vector3 s = m_angles.cwise().sin(); Matrix3 res; res << c.y()*c.z(), -c.y()*s.z(), s.y(), c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(), -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y(); return res; } operator QuaternionType() { return QuaternionType(toRotationMatrix()); } }; // Euler angles slerp template<> EulerAngles lerp(float t, const EulerAngles& a, const EulerAngles& b) { EulerAngles res; res.coeffs() = lerp(t, a.coeffs(), b.coeffs()); return res; } RenderingWidget::RenderingWidget() { mAnimate = false; mCurrentTrackingMode = TM_NO_TRACK; mNavMode = NavTurnAround; mLerpMode = LerpQuaternion; mRotationMode = RotationStable; mTrackball.setCamera(&mCamera); // required to capture key press events setFocusPolicy(Qt::ClickFocus); } void RenderingWidget::grabFrame(void) { // ask user for a time bool ok = false; double t = 0; if (!m_timeline.empty()) t = (--m_timeline.end())->first + 1.; t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ", t, 0, 1e3, 1, &ok); if (ok) { Frame aux; aux.orientation = mCamera.viewMatrix().linear(); aux.position = mCamera.viewMatrix().translation(); m_timeline[t] = aux; } } void RenderingWidget::drawScene() { static FancySpheres sFancySpheres; float length = 50; gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1)); gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1)); gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1)); // draw the fractal object float sqrt3 = ei_sqrt(3.); glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data()); glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data()); glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data()); glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data()); glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data()); glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data()); glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data()); glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data()); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data()); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data()); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64); // glEnable(GL_LIGHTING); // glEnable(GL_LIGHT0); // glEnable(GL_LIGHT1); glColor3f(0.4, 0.7, 0.4); {IcoSphere s(5); float length = 6; // const std::vector& indices = s.indices(2); for (unsigned int i=0; i0.9999) std::cout << d << " " << n.transpose() << "\n"; // Vector3f v = n.cross(u).normalized(); } // sFancySpheres.draw(); // glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data()); // glNormalPointer(GL_FLOAT, 0, mNormals[0].data()); // glEnableClientState(GL_VERTEX_ARRAY); // glEnableClientState(GL_NORMAL_ARRAY); // glDrawArrays(GL_TRIANGLES, 0, mVertices.size()); // glDisableClientState(GL_VERTEX_ARRAY); // glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_LIGHTING); } void RenderingWidget::animate() { m_alpha += double(m_timer.interval()) * 1e-3; TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha); TimeLine::const_iterator lo = hi; --lo; Frame currentFrame; if(hi==m_timeline.end()) { // end currentFrame = lo->second; stopAnimation(); } else if(hi==m_timeline.begin()) { // start currentFrame = hi->second; } else { float s = (m_alpha - lo->first)/(hi->first - lo->first); if (mLerpMode==LerpEulerAngles) currentFrame = ::lerpFrame >(s, lo->second, hi->second); else if (mLerpMode==LerpQuaternion) currentFrame = ::lerpFrame(s, lo->second, hi->second); else { std::cerr << "Invalid rotation interpolation mode (abort)\n"; exit(2); } currentFrame.orientation.coeffs().normalize(); } currentFrame.orientation = currentFrame.orientation.inverse(); currentFrame.position = - (currentFrame.orientation * currentFrame.position); mCamera.setFrame(currentFrame); updateGL(); } void RenderingWidget::keyPressEvent(QKeyEvent * e) { switch(e->key()) { case Qt::Key_Up: mCamera.zoom(2); break; case Qt::Key_Down: mCamera.zoom(-2); break; // add a frame case Qt::Key_G: grabFrame(); break; // clear the time line case Qt::Key_C: m_timeline.clear(); break; // move the camera to initial pos case Qt::Key_R: resetCamera(); break; // start/stop the animation case Qt::Key_A: if (mAnimate) { stopAnimation(); } else { m_alpha = 0; connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); m_timer.start(1000/30); mAnimate = true; } break; default: break; } updateGL(); } void RenderingWidget::stopAnimation() { disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); m_timer.stop(); mAnimate = false; m_alpha = 0; } void RenderingWidget::mousePressEvent(QMouseEvent* e) { mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier); switch(e->button()) { case Qt::LeftButton: if(fly) { mCurrentTrackingMode = TM_LOCAL_ROTATE; mTrackball.start(Trackball::Local); } else { mCurrentTrackingMode = TM_ROTATE_AROUND; mTrackball.start(Trackball::Around); } mTrackball.track(mMouseCoords); break; case Qt::MidButton: if(fly) mCurrentTrackingMode = TM_FLY_Z; else mCurrentTrackingMode = TM_ZOOM; break; case Qt::RightButton: mCurrentTrackingMode = TM_FLY_PAN; break; default: break; } } void RenderingWidget::mouseReleaseEvent(QMouseEvent*) { mCurrentTrackingMode = TM_NO_TRACK; updateGL(); } void RenderingWidget::mouseMoveEvent(QMouseEvent* e) { // tracking if(mCurrentTrackingMode != TM_NO_TRACK) { float dx = float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth()); float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight()); // speedup the transformations if(e->modifiers() & Qt::ShiftModifier) { dx *= 10.; dy *= 10.; } switch(mCurrentTrackingMode) { case TM_ROTATE_AROUND: case TM_LOCAL_ROTATE: if (mRotationMode==RotationStable) { // use the stable trackball implementation mapping // the 2D coordinates to 3D points on a sphere. mTrackball.track(Vector2i(e->pos().x(), e->pos().y())); } else { // standard approach mapping the x and y displacements as rotations // around the camera's X and Y axes. Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY()) * AngleAxisf(-dy*M_PI, Vector3f::UnitX()); if (mCurrentTrackingMode==TM_LOCAL_ROTATE) mCamera.localRotate(q); else mCamera.rotateAroundTarget(q); } break; case TM_ZOOM : mCamera.zoom(dy*100); break; case TM_FLY_Z : mCamera.localTranslate(Vector3f(0, 0, -dy*200)); break; case TM_FLY_PAN : mCamera.localTranslate(Vector3f(dx*200, dy*200, 0)); break; default: break; } updateGL(); } mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); } void RenderingWidget::paintGL() { glEnable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); glDisable(GL_COLOR_MATERIAL); glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); glDisable(GL_TEXTURE_1D); glDisable(GL_TEXTURE_2D); glDisable(GL_TEXTURE_3D); // Clear buffers glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); mCamera.activateGL(); drawScene(); } void RenderingWidget::initializeGL() { glClearColor(1., 1., 1., 0.); glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); glDepthMask(GL_TRUE); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); mCamera.setPosition(Vector3f(-200, -200, -200)); mCamera.setTarget(Vector3f(0, 0, 0)); mInitFrame.orientation = mCamera.orientation().inverse(); mInitFrame.position = mCamera.viewMatrix().translation(); } void RenderingWidget::resizeGL(int width, int height) { mCamera.setViewport(width,height); } void RenderingWidget::setNavMode(int m) { mNavMode = NavMode(m); } void RenderingWidget::setLerpMode(int m) { mLerpMode = LerpMode(m); } void RenderingWidget::setRotationMode(int m) { mRotationMode = RotationMode(m); } void RenderingWidget::resetCamera() { if (mAnimate) stopAnimation(); m_timeline.clear(); Frame aux0 = mCamera.frame(); aux0.orientation = aux0.orientation.inverse(); aux0.position = mCamera.viewMatrix().translation(); m_timeline[0] = aux0; Vector3f currentTarget = mCamera.target(); mCamera.setTarget(Vector3f::Zero()); // compute the rotation duration to move the camera to the target Frame aux1 = mCamera.frame(); aux1.orientation = aux1.orientation.inverse(); aux1.position = mCamera.viewMatrix().translation(); float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9; if (duration<0.1) duration = 0.1; // put the camera at that time step: aux1 = aux0.lerp(duration/2,mInitFrame); // and make it look at the target again aux1.orientation = aux1.orientation.inverse(); aux1.position = - (aux1.orientation * aux1.position); mCamera.setFrame(aux1); mCamera.setTarget(Vector3f::Zero()); // add this camera keyframe aux1.orientation = aux1.orientation.inverse(); aux1.position = mCamera.viewMatrix().translation(); m_timeline[duration] = aux1; m_timeline[2] = mInitFrame; m_alpha = 0; animate(); connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); m_timer.start(1000/30); mAnimate = true; } QWidget* RenderingWidget::createNavigationControlWidget() { QWidget* panel = new QWidget(); QVBoxLayout* layout = new QVBoxLayout(); { QPushButton* but = new QPushButton("reset"); but->setToolTip("move the camera to initial position (with animation)"); layout->addWidget(but); connect(but, SIGNAL(clicked()), this, SLOT(resetCamera())); } { // navigation mode QGroupBox* box = new QGroupBox("navigation mode"); QVBoxLayout* boxLayout = new QVBoxLayout; QButtonGroup* group = new QButtonGroup(panel); QRadioButton* but; but = new QRadioButton("turn around"); but->setToolTip("look around an object"); group->addButton(but, NavTurnAround); boxLayout->addWidget(but); but = new QRadioButton("fly"); but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)"); group->addButton(but, NavFly); boxLayout->addWidget(but); group->button(mNavMode)->setChecked(true); connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int))); box->setLayout(boxLayout); layout->addWidget(box); } { // track ball, rotation mode QGroupBox* box = new QGroupBox("rotation mode"); QVBoxLayout* boxLayout = new QVBoxLayout; QButtonGroup* group = new QButtonGroup(panel); QRadioButton* but; but = new QRadioButton("stable trackball"); group->addButton(but, RotationStable); boxLayout->addWidget(but); but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere"); but = new QRadioButton("standard rotation"); group->addButton(but, RotationStandard); boxLayout->addWidget(but); but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes"); group->button(mRotationMode)->setChecked(true); connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int))); box->setLayout(boxLayout); layout->addWidget(box); } { // interpolation mode QGroupBox* box = new QGroupBox("spherical interpolation"); QVBoxLayout* boxLayout = new QVBoxLayout; QButtonGroup* group = new QButtonGroup(panel); QRadioButton* but; but = new QRadioButton("quaternion slerp"); group->addButton(but, LerpQuaternion); boxLayout->addWidget(but); but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations"); but = new QRadioButton("euler angles"); group->addButton(but, LerpEulerAngles); boxLayout->addWidget(but); but->setToolTip("use Euler angles to interpolate orientations"); group->button(mNavMode)->setChecked(true); connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int))); box->setLayout(boxLayout); layout->addWidget(box); } layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding)); panel->setLayout(layout); return panel; } QuaternionDemo::QuaternionDemo() { mRenderingWidget = new RenderingWidget(); setCentralWidget(mRenderingWidget); QDockWidget* panel = new QDockWidget("navigation", this); panel->setAllowedAreas((QFlags)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea)); addDockWidget(Qt::RightDockWidgetArea, panel); panel->setWidget(mRenderingWidget->createNavigationControlWidget()); } int main(int argc, char *argv[]) { std::cout << "Navigation:\n"; std::cout << " left button: rotate around the target\n"; std::cout << " middle button: zoom\n"; std::cout << " left button + ctrl quake rotate (rotate around camera position)\n"; std::cout << " middle button + ctrl walk (progress along camera's z direction)\n"; std::cout << " left button: pan (translate in the XY camera's plane)\n\n"; std::cout << "R : move the camera to initial position\n"; std::cout << "A : start/stop animation\n"; std::cout << "C : clear the animation\n"; std::cout << "G : add a key frame\n"; QApplication app(argc, argv); QuaternionDemo demo; demo.resize(600,500); demo.show(); return app.exec(); } #include "quaternion_demo.moc"