// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "sparse.h" template bool test_random_setter(SparseType& sm, const DenseType& ref, const std::vector& nonzeroCoords) { { sm.setZero(); SetterType w(sm); std::vector remaining = nonzeroCoords; while(!remaining.empty()) { int i = ei_random(0,remaining.size()-1); w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); remaining[i] = remaining.back(); remaining.pop_back(); } } return sm.isApprox(ref); } template void sparse_basic(int rows, int cols) { double density = std::max(8./(rows*cols), 0.01); typedef Matrix DenseMatrix; typedef Matrix DenseVector; Scalar eps = 1e-6; SparseMatrix m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); std::vector zeroCoords; std::vector nonzeroCoords; initSparse(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return; // test coeff and coeffRef for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); VERIFY_IS_APPROX(m, refMat); /* // test InnerIterators and Block expressions for (int t=0; t<10; ++t) { int j = ei_random(0,cols-1); int i = ei_random(0,rows-1); int w = ei_random(1,cols-j-1); int h = ei_random(1,rows-i-1); // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); for(int c=0; c, FullyCoherentAccessPattern> w(m); // for (int i=0; icoeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); // } // } // VERIFY_IS_APPROX(m, refMat); // random setter // { // m.setZero(); // VERIFY_IS_NOT_APPROX(m, refMat); // SparseSetter, RandomAccessPattern> w(m); // std::vector remaining = nonzeroCoords; // while(!remaining.empty()) // { // int i = ei_random(0,remaining.size()-1); // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); // remaining[i] = remaining.back(); // remaining.pop_back(); // } // } // VERIFY_IS_APPROX(m, refMat); VERIFY(( test_random_setter, StdMapTraits> >(m,refMat,nonzeroCoords) )); #ifdef _HASH_MAP VERIFY(( test_random_setter, GnuHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif #ifdef _DENSE_HASH_MAP_H_ VERIFY(( test_random_setter, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif #ifdef _SPARSE_HASH_MAP_H_ VERIFY(( test_random_setter, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif // test fillrand { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrix m2(rows,cols); m2.startFill(); for (int j=0; j(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.fillrand(i,j) = m1(i,j) = ei_random(); } } m2.endFill(); std::cerr << m1 << "\n\n" << m2 << "\n"; VERIFY_IS_APPROX(m2,m1); } // { // m.setZero(); // VERIFY_IS_NOT_APPROX(m, refMat); // // RandomSetter > w(m); // RandomSetter, GoogleDenseHashMapTraits > w(m); // // RandomSetter, GnuHashMapTraits > w(m); // std::vector remaining = nonzeroCoords; // while(!remaining.empty()) // { // int i = ei_random(0,remaining.size()-1); // w(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); // remaining[i] = remaining.back(); // remaining.pop_back(); // } // } // std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n"; // VERIFY_IS_APPROX(m, refMat); // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrix m2(rows, rows); initSparse(density, refMat2, m2); int j0 = ei_random(0,rows-1); int j1 = ei_random(0,rows-1); // VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); // VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrix m2(rows, rows); initSparse(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); } // test matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); SparseMatrix m2(rows, rows); SparseMatrix m3(rows, rows); SparseMatrix m4(rows, rows); initSparse(density, refMat2, m2); initSparse(density, refMat3, m3); initSparse(density, refMat4, m4); VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); } } void test_sparse_basic() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( sparse_basic(8, 8) ); CALL_SUBTEST( sparse_basic >(16, 16) ); CALL_SUBTEST( sparse_basic(33, 33) ); } }