// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_TEST_PART_7) // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway: // TODO do the same for MSVC? #if defined(__clang__) #if (__clang_major__ * 100 + __clang_minor__) >= 308 #pragma clang diagnostic ignored "-Wdouble-promotion" #endif #elif defined(__GNUC__) // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this. #pragma GCC diagnostic ignored "-Wdouble-promotion" #endif #endif #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3) #ifndef EIGEN_DONT_VECTORIZE #define EIGEN_DONT_VECTORIZE #endif #endif static bool g_called; #define EIGEN_SCALAR_BINARY_OP_PLUGIN \ { g_called |= (!internal::is_same::value); } #include "main.h" using namespace std; #define VERIFY_MIX_SCALAR(XPR, REF) \ g_called = false; \ VERIFY_IS_APPROX(XPR, REF); \ VERIFY(g_called&& #XPR " not properly optimized"); template void mixingtypes(int size = SizeAtCompileType) { typedef std::complex CF; typedef std::complex CD; typedef Matrix Mat_f; typedef Matrix Mat_d; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cf; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cd; typedef Matrix Vec_f; typedef Matrix Vec_d; typedef Matrix, SizeAtCompileType, 1> Vec_cf; typedef Matrix, SizeAtCompileType, 1> Vec_cd; Mat_f mf = Mat_f::Random(size, size); Mat_d md = mf.template cast(); // Mat_d rd = md; Mat_cf mcf = Mat_cf::Random(size, size); Mat_cd mcd = mcf.template cast >(); Mat_cd rcd = mcd; Vec_f vf = Vec_f::Random(size, 1); Vec_d vd = vf.template cast(); Vec_cf vcf = Vec_cf::Random(size, 1); Vec_cd vcd = vcf.template cast >(); float sf = internal::random(); double sd = internal::random(); complex scf = internal::random >(); complex scd = internal::random >(); mf + mf; float epsf = std::sqrt(std::numeric_limits::min EIGEN_EMPTY()); double epsd = std::sqrt(std::numeric_limits::min EIGEN_EMPTY()); while (std::abs(sf) < epsf) sf = internal::random(); while (std::abs(sd) < epsd) sd = internal::random(); while (std::abs(scf) < epsf) scf = internal::random(); while (std::abs(scd) < epsd) scd = internal::random(); // check scalar products VERIFY_MIX_SCALAR(vcf * sf, vcf * complex(sf)); VERIFY_MIX_SCALAR(sd * vcd, complex(sd) * vcd); VERIFY_MIX_SCALAR(vf * scf, vf.template cast >() * scf); VERIFY_MIX_SCALAR(scd * vd, scd * vd.template cast >()); VERIFY_MIX_SCALAR(vcf * 2, vcf * complex(2)); VERIFY_MIX_SCALAR(vcf * 2.1, vcf * complex(2.1)); VERIFY_MIX_SCALAR(2 * vcf, vcf * complex(2)); VERIFY_MIX_SCALAR(2.1 * vcf, vcf * complex(2.1)); // check scalar quotients VERIFY_MIX_SCALAR(vcf / sf, vcf / complex(sf)); VERIFY_MIX_SCALAR(vf / scf, vf.template cast >() / scf); VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast >().array() / scf); VERIFY_MIX_SCALAR(scd / vd.array(), scd / vd.template cast >().array()); // check scalar increment VERIFY_MIX_SCALAR(vcf.array() + sf, vcf.array() + complex(sf)); VERIFY_MIX_SCALAR(sd + vcd.array(), complex(sd) + vcd.array()); VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast >().array() + scf); VERIFY_MIX_SCALAR(scd + vd.array(), scd + vd.template cast >().array()); // check scalar subtractions VERIFY_MIX_SCALAR(vcf.array() - sf, vcf.array() - complex(sf)); VERIFY_MIX_SCALAR(sd - vcd.array(), complex(sd) - vcd.array()); VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast >().array() - scf); VERIFY_MIX_SCALAR(scd - vd.array(), scd - vd.template cast >().array()); // check scalar powers // NOTE: scalar exponents use a unary op. VERIFY_IS_APPROX(pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex(sf))); VERIFY_IS_APPROX(vcf.array().pow(sf), Eigen::pow(vcf.array(), complex(sf))); VERIFY_MIX_SCALAR(pow(sd, vcd.array()), Eigen::pow(complex(sd), vcd.array())); VERIFY_IS_APPROX(Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast >().array(), scf)); VERIFY_IS_APPROX(vf.array().pow(scf), Eigen::pow(vf.template cast >().array(), scf)); VERIFY_MIX_SCALAR(Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast >().array())); // check dot product vf.dot(vf); VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast >())); // check diagonal product VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast >().asDiagonal() * mcf); VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast >()); VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast >().asDiagonal()); VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast >() * vcd.asDiagonal()); // check inner product VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast >().transpose() * vcf).value()); // check outer product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast >() * vcf.transpose()).eval()); // coeff wise product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast >() * vcf.transpose()).eval()); Mat_cd mcd2 = mcd; VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast >()); // check matrix-matrix products VERIFY_IS_APPROX(sd * md * mcd, (sd * md).template cast().eval() * mcd); VERIFY_IS_APPROX(sd * mcd * md, sd * mcd * md.template cast()); VERIFY_IS_APPROX(scd * md * mcd, scd * md.template cast().eval() * mcd); VERIFY_IS_APPROX(scd * mcd * md, scd * mcd * md.template cast()); VERIFY_IS_APPROX(sf * mf * mcf, sf * mf.template cast() * mcf); VERIFY_IS_APPROX(sf * mcf * mf, sf * mcf * mf.template cast()); VERIFY_IS_APPROX(scf * mf * mcf, scf * mf.template cast() * mcf); VERIFY_IS_APPROX(scf * mcf * mf, scf * mcf * mf.template cast()); VERIFY_IS_APPROX(sd * md.adjoint() * mcd, (sd * md).template cast().eval().adjoint() * mcd); VERIFY_IS_APPROX(sd * mcd.adjoint() * md, sd * mcd.adjoint() * md.template cast()); VERIFY_IS_APPROX(sd * md.adjoint() * mcd.adjoint(), (sd * md).template cast().eval().adjoint() * mcd.adjoint()); VERIFY_IS_APPROX(sd * mcd.adjoint() * md.adjoint(), sd * mcd.adjoint() * md.template cast().adjoint()); VERIFY_IS_APPROX(sd * md * mcd.adjoint(), (sd * md).template cast().eval() * mcd.adjoint()); VERIFY_IS_APPROX(sd * mcd * md.adjoint(), sd * mcd * md.template cast().adjoint()); VERIFY_IS_APPROX(sf * mf.adjoint() * mcf, (sf * mf).template cast().eval().adjoint() * mcf); VERIFY_IS_APPROX(sf * mcf.adjoint() * mf, sf * mcf.adjoint() * mf.template cast()); VERIFY_IS_APPROX(sf * mf.adjoint() * mcf.adjoint(), (sf * mf).template cast().eval().adjoint() * mcf.adjoint()); VERIFY_IS_APPROX(sf * mcf.adjoint() * mf.adjoint(), sf * mcf.adjoint() * mf.template cast().adjoint()); VERIFY_IS_APPROX(sf * mf * mcf.adjoint(), (sf * mf).template cast().eval() * mcf.adjoint()); VERIFY_IS_APPROX(sf * mcf * mf.adjoint(), sf * mcf * mf.template cast().adjoint()); VERIFY_IS_APPROX(sf * mf * vcf, (sf * mf).template cast().eval() * vcf); VERIFY_IS_APPROX(scf * mf * vcf, (scf * mf.template cast()).eval() * vcf); VERIFY_IS_APPROX(sf * mcf * vf, sf * mcf * vf.template cast()); VERIFY_IS_APPROX(scf * mcf * vf, scf * mcf * vf.template cast()); VERIFY_IS_APPROX(sf * vcf.adjoint() * mf, sf * vcf.adjoint() * mf.template cast().eval()); VERIFY_IS_APPROX(scf * vcf.adjoint() * mf, scf * vcf.adjoint() * mf.template cast().eval()); VERIFY_IS_APPROX(sf * vf.adjoint() * mcf, sf * vf.adjoint().template cast().eval() * mcf); VERIFY_IS_APPROX(scf * vf.adjoint() * mcf, scf * vf.adjoint().template cast().eval() * mcf); VERIFY_IS_APPROX(sd * md * vcd, (sd * md).template cast().eval() * vcd); VERIFY_IS_APPROX(scd * md * vcd, (scd * md.template cast()).eval() * vcd); VERIFY_IS_APPROX(sd * mcd * vd, sd * mcd * vd.template cast().eval()); VERIFY_IS_APPROX(scd * mcd * vd, scd * mcd * vd.template cast().eval()); VERIFY_IS_APPROX(sd * vcd.adjoint() * md, sd * vcd.adjoint() * md.template cast().eval()); VERIFY_IS_APPROX(scd * vcd.adjoint() * md, scd * vcd.adjoint() * md.template cast().eval()); VERIFY_IS_APPROX(sd * vd.adjoint() * mcd, sd * vd.adjoint().template cast().eval() * mcd); VERIFY_IS_APPROX(scd * vd.adjoint() * mcd, scd * vd.adjoint().template cast().eval() * mcd); VERIFY_IS_APPROX(sd * vcd.adjoint() * md.template triangularView(), sd * vcd.adjoint() * md.template cast().eval().template triangularView()); VERIFY_IS_APPROX(scd * vcd.adjoint() * md.template triangularView(), scd * vcd.adjoint() * md.template cast().eval().template triangularView()); VERIFY_IS_APPROX(sd * vcd.adjoint() * md.transpose().template triangularView(), sd * vcd.adjoint() * md.transpose().template cast().eval().template triangularView()); VERIFY_IS_APPROX(scd * vcd.adjoint() * md.transpose().template triangularView(), scd * vcd.adjoint() * md.transpose().template cast().eval().template triangularView()); VERIFY_IS_APPROX(sd * vd.adjoint() * mcd.template triangularView(), sd * vd.adjoint().template cast().eval() * mcd.template triangularView()); VERIFY_IS_APPROX(scd * vd.adjoint() * mcd.template triangularView(), scd * vd.adjoint().template cast().eval() * mcd.template triangularView()); VERIFY_IS_APPROX(sd * vd.adjoint() * mcd.transpose().template triangularView(), sd * vd.adjoint().template cast().eval() * mcd.transpose().template triangularView()); VERIFY_IS_APPROX(scd * vd.adjoint() * mcd.transpose().template triangularView(), scd * vd.adjoint().template cast().eval() * mcd.transpose().template triangularView()); // Not supported yet: trmm // VERIFY_IS_APPROX(sd*mcd*md.template triangularView(), sd*mcd*md.template cast().eval().template // triangularView()); VERIFY_IS_APPROX(scd*mcd*md.template triangularView(), scd*mcd*md.template // cast().eval().template triangularView()); VERIFY_IS_APPROX(sd*md*mcd.template triangularView(), // sd*md.template cast().eval()*mcd.template triangularView()); VERIFY_IS_APPROX(scd*md*mcd.template // triangularView(), scd*md.template cast().eval()*mcd.template triangularView()); // Not supported yet: symv // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView(), sd*vcd.adjoint()*md.template // cast().eval().template selfadjointView()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template // selfadjointView(), scd*vcd.adjoint()*md.template cast().eval().template selfadjointView()); // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView(), sd*vd.adjoint().template // cast().eval()*mcd.template selfadjointView()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template // selfadjointView(), scd*vd.adjoint().template cast().eval()*mcd.template selfadjointView()); // Not supported yet: symm // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView(), sd*vcd.adjoint()*md.template // cast().eval().template selfadjointView()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template // selfadjointView(), scd*vcd.adjoint()*md.template cast().eval().template selfadjointView()); // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView(), sd*vd.adjoint().template // cast().eval()*mcd.template selfadjointView()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template // selfadjointView(), scd*vd.adjoint().template cast().eval()*mcd.template selfadjointView()); rcd.setZero(); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = sd * mcd * md), Mat_cd((sd * mcd * md.template cast().eval()).template triangularView())); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = sd * md * mcd), Mat_cd((sd * md.template cast().eval() * mcd).template triangularView())); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = scd * mcd * md), Mat_cd((scd * mcd * md.template cast().eval()).template triangularView())); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = scd * md * mcd), Mat_cd((scd * md.template cast().eval() * mcd).template triangularView())); VERIFY_IS_APPROX(md.array() * mcd.array(), md.template cast().eval().array() * mcd.array()); VERIFY_IS_APPROX(mcd.array() * md.array(), mcd.array() * md.template cast().eval().array()); VERIFY_IS_APPROX(md.array() + mcd.array(), md.template cast().eval().array() + mcd.array()); VERIFY_IS_APPROX(mcd.array() + md.array(), mcd.array() + md.template cast().eval().array()); VERIFY_IS_APPROX(md.array() - mcd.array(), md.template cast().eval().array() - mcd.array()); VERIFY_IS_APPROX(mcd.array() - md.array(), mcd.array() - md.template cast().eval().array()); if (mcd.array().abs().minCoeff() > epsd) { VERIFY_IS_APPROX(md.array() / mcd.array(), md.template cast().eval().array() / mcd.array()); } if (md.array().abs().minCoeff() > epsd) { VERIFY_IS_APPROX(mcd.array() / md.array(), mcd.array() / md.template cast().eval().array()); } if (md.array().abs().minCoeff() > epsd || mcd.array().abs().minCoeff() > epsd) { VERIFY_IS_APPROX(md.array().pow(mcd.array()), md.template cast().eval().array().pow(mcd.array())); VERIFY_IS_APPROX(mcd.array().pow(md.array()), mcd.array().pow(md.template cast().eval().array())); VERIFY_IS_APPROX(pow(md.array(), mcd.array()), md.template cast().eval().array().pow(mcd.array())); VERIFY_IS_APPROX(pow(mcd.array(), md.array()), mcd.array().pow(md.template cast().eval().array())); } rcd = mcd; VERIFY_IS_APPROX(rcd = md, md.template cast().eval()); rcd = mcd; VERIFY_IS_APPROX(rcd += md, mcd + md.template cast().eval()); rcd = mcd; VERIFY_IS_APPROX(rcd -= md, mcd - md.template cast().eval()); rcd = mcd; VERIFY_IS_APPROX(rcd.array() *= md.array(), mcd.array() * md.template cast().eval().array()); rcd = mcd; if (md.array().abs().minCoeff() > epsd) { VERIFY_IS_APPROX(rcd.array() /= md.array(), mcd.array() / md.template cast().eval().array()); } rcd = mcd; VERIFY_IS_APPROX(rcd.noalias() += md + mcd * md, mcd + (md.template cast().eval()) + mcd * (md.template cast().eval())); VERIFY_IS_APPROX(rcd.noalias() = md * md, ((md * md).eval().template cast())); rcd = mcd; VERIFY_IS_APPROX(rcd.noalias() += md * md, mcd + ((md * md).eval().template cast())); rcd = mcd; VERIFY_IS_APPROX(rcd.noalias() -= md * md, mcd - ((md * md).eval().template cast())); VERIFY_IS_APPROX(rcd.noalias() = mcd + md * md, mcd + ((md * md).eval().template cast())); rcd = mcd; VERIFY_IS_APPROX(rcd.noalias() += mcd + md * md, mcd + mcd + ((md * md).eval().template cast())); rcd = mcd; VERIFY_IS_APPROX(rcd.noalias() -= mcd + md * md, -((md * md).eval().template cast())); } EIGEN_DECLARE_TEST(mixingtypes) { g_called = false; // Silence -Wunneeded-internal-declaration. for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(mixingtypes<3>()); CALL_SUBTEST_2(mixingtypes<4>()); CALL_SUBTEST_3(mixingtypes(internal::random(1, EIGEN_TEST_MAX_SIZE))); CALL_SUBTEST_4(mixingtypes<3>()); CALL_SUBTEST_5(mixingtypes<4>()); CALL_SUBTEST_6(mixingtypes(internal::random(1, EIGEN_TEST_MAX_SIZE))); } }