// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include template void inverse_for_fixed_size(const MatrixType&, std::enable_if_t* = 0) {} template void inverse_for_fixed_size(const MatrixType& m1, std::enable_if_t* = 0) { using std::abs; MatrixType m2, identity = MatrixType::Identity(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; // computeInverseAndDetWithCheck tests // First: an invertible matrix bool invertible; Scalar det; m2.setZero(); m1.computeInverseAndDetWithCheck(m2, det, invertible); VERIFY(invertible); VERIFY_IS_APPROX(identity, m1 * m2); VERIFY_IS_APPROX(det, m1.determinant()); m2.setZero(); m1.computeInverseWithCheck(m2, invertible); VERIFY(invertible); VERIFY_IS_APPROX(identity, m1 * m2); // Second: a rank one matrix (not invertible, except for 1x1 matrices) VectorType v3 = VectorType::Random(); MatrixType m3 = v3 * v3.transpose(), m4; m3.computeInverseAndDetWithCheck(m4, det, invertible); VERIFY(m1.rows() == 1 ? invertible : !invertible); VERIFY_IS_MUCH_SMALLER_THAN(abs(det - m3.determinant()), RealScalar(1)); m3.computeInverseWithCheck(m4, invertible); VERIFY(m1.rows() == 1 ? invertible : !invertible); // check with submatrices { Matrix m5; m5.setRandom(); m5.topLeftCorner(m1.rows(), m1.rows()) = m1; m2 = m5.template topLeftCorner().inverse(); VERIFY_IS_APPROX((m5.template topLeftCorner()), m2.inverse()); } } template void inverse(const MatrixType& m) { /* this test covers the following files: Inverse.h */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, rows); createRandomPIMatrixOfRank(rows, rows, rows, m1); m2 = m1.inverse(); VERIFY_IS_APPROX(m1, m2.inverse()); VERIFY_IS_APPROX((Scalar(2) * m2).inverse(), m2.inverse() * Scalar(0.5)); VERIFY_IS_APPROX(identity, m1.inverse() * m1); VERIFY_IS_APPROX(identity, m1 * m1.inverse()); VERIFY_IS_APPROX(m1, m1.inverse().inverse()); // since for the general case we implement separately row-major and col-major, test that VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose())); inverse_for_fixed_size(m1); // check in-place inversion if (MatrixType::RowsAtCompileTime >= 2 && MatrixType::RowsAtCompileTime <= 4) { // in-place is forbidden VERIFY_RAISES_ASSERT(m1 = m1.inverse()); } else { m2 = m1.inverse(); m1 = m1.inverse(); VERIFY_IS_APPROX(m1, m2); } } template void inverse_zerosized() { Matrix A(0, 0); { Matrix b, x; x = A.inverse() * b; } { Matrix b(0, 1), x; x = A.inverse() * b; VERIFY_IS_EQUAL(x.rows(), 0); VERIFY_IS_EQUAL(x.cols(), 1); } } EIGEN_DECLARE_TEST(inverse) { int s = 0; for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(inverse(Matrix())); CALL_SUBTEST_2(inverse(Matrix2d())); CALL_SUBTEST_3(inverse(Matrix3f())); CALL_SUBTEST_4(inverse(Matrix4f())); CALL_SUBTEST_4(inverse(Matrix())); s = internal::random(50, 320); CALL_SUBTEST_5(inverse(MatrixXf(s, s))); TEST_SET_BUT_UNUSED_VARIABLE(s) CALL_SUBTEST_5(inverse_zerosized()); CALL_SUBTEST_5(inverse(MatrixXf(0, 0))); CALL_SUBTEST_5(inverse(MatrixXf(1, 1))); s = internal::random(25, 100); CALL_SUBTEST_6(inverse(MatrixXcd(s, s))); TEST_SET_BUT_UNUSED_VARIABLE(s) CALL_SUBTEST_7(inverse(Matrix4d())); CALL_SUBTEST_7(inverse(Matrix())); CALL_SUBTEST_8(inverse(Matrix4cd())); } }