// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include #include #include #include #include #include #include // The following includes of STL headers have to be done _before_ the // definition of macros min() and max(). The reason is that many STL // implementations will not work properly as the min and max symbols collide // with the STL functions std:min() and std::max(). The STL headers may check // for the macro definition of min/max and issue a warning or undefine the // macros. // // Still, Windows defines min() and max() in windef.h as part of the regular // Windows system interfaces and many other Windows APIs depend on these // macros being available. To prevent the macro expansion of min/max and to // make Eigen compatible with the Windows environment all function calls of // std::min() and std::max() have to be written with parenthesis around the // function name. // // All STL headers used by Eigen should be included here. Because main.h is // included before any Eigen header and because the STL headers are guarded // against multiple inclusions, no STL header will see our own min/max macro // definitions. #include #include // Disable ICC's std::complex operator specializations so we can use our own. #define _OVERRIDE_COMPLEX_SPECIALIZATION_ 1 #include #include #include #include #include #if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L) #include #include #ifdef EIGEN_USE_THREADS #include #endif #endif // Configure GPU. #if defined(EIGEN_USE_HIP) #if defined(__HIPCC__) && !defined(EIGEN_NO_HIP) #define EIGEN_HIPCC __HIPCC__ #include #include #endif #elif defined(__CUDACC__) && !defined(EIGEN_NO_CUDA) #define EIGEN_CUDACC __CUDACC__ #include #include #include #if CUDA_VERSION >= 7050 #include #endif #endif #if defined(EIGEN_CUDACC) || defined(EIGEN_HIPCC) #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #endif // To test that all calls from Eigen code to std::min() and std::max() are // protected by parenthesis against macro expansion, the min()/max() macros // are defined here and any not-parenthesized min/max call will cause a // compiler error. #if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL) // // HIP header files include the following files // // // // which seem to contain not-parenthesized calls to "max"/"min", triggering the following check and causing the compile to fail // // Including those header files before the following macro definition for "min" / "max", only partially resolves the issue // This is because other HIP header files also define "isnan" / "isinf" / "isfinite" functions, which are needed in other // headers. // // So instead choosing to simply disable this check for HIP // #define min(A,B) please_protect_your_min_with_parentheses #define max(A,B) please_protect_your_max_with_parentheses #define isnan(X) please_protect_your_isnan_with_parentheses #define isinf(X) please_protect_your_isinf_with_parentheses #define isfinite(X) please_protect_your_isfinite_with_parentheses #endif // test possible conflicts struct real {}; struct imag {}; #ifdef M_PI #undef M_PI #endif #define M_PI please_use_EIGEN_PI_instead_of_M_PI #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes // B0 is defined in POSIX header termios.h #define B0 FORBIDDEN_IDENTIFIER // `I` may be defined by complex.h: #define I FORBIDDEN_IDENTIFIER // Unit tests calling Eigen's blas library must preserve the default blocking size // to avoid troubles. #ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS #define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS #endif // shuts down ICC's remark #593: variable "XXX" was set but never used #define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X) #ifdef TEST_ENABLE_TEMPORARY_TRACKING static long int nb_temporaries; static long int nb_temporaries_on_assert = -1; inline void on_temporary_creation(long int size) { // here's a great place to set a breakpoint when debugging failures in this test! if(size!=0) nb_temporaries++; if(nb_temporaries_on_assert>0) assert(nb_temporaries if NDEBUG is not defined. #ifndef DEBUG #define DEBUG #endif // bounds integer values for AltiVec #if defined(__ALTIVEC__) || defined(__VSX__) #define EIGEN_MAKING_DOCS #endif #define DEFAULT_REPEAT 10 namespace Eigen { static std::vector g_test_stack; // level == 0 <=> abort if test fail // level >= 1 <=> warning message to std::cerr if test fail static int g_test_level = 0; static int g_repeat = 1; static unsigned int g_seed = 0; static bool g_has_set_repeat = false, g_has_set_seed = false; class EigenTest { public: EigenTest() : m_func(0) {} EigenTest(const char* a_name, void (*func)(void)) : m_name(a_name), m_func(func) { get_registered_tests().push_back(this); } const std::string& name() const { return m_name; } void operator()() const { m_func(); } static const std::vector& all() { return get_registered_tests(); } protected: static std::vector& get_registered_tests() { static std::vector* ms_registered_tests = new std::vector(); return *ms_registered_tests; } std::string m_name; void (*m_func)(void); }; // Declare and register a test, e.g.: // EIGEN_DECLARE_TEST(mytest) { ... } // will create a function: // void test_mytest() { ... } // that will be automatically called. #define EIGEN_DECLARE_TEST(X) \ void EIGEN_CAT(test_,X) (); \ static EigenTest EIGEN_CAT(test_handler_,X) (EIGEN_MAKESTRING(X), & EIGEN_CAT(test_,X)); \ void EIGEN_CAT(test_,X) () } #define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl // #define TRACK while() #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") #if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) && !defined(__SYCL_DEVICE_ONLY__) #define EIGEN_EXCEPTIONS #endif #ifndef EIGEN_NO_ASSERTION_CHECKING namespace Eigen { static const bool should_raise_an_assert = false; // Used to avoid to raise two exceptions at a time in which // case the exception is not properly caught. // This may happen when a second exceptions is triggered in a destructor. static bool no_more_assert = false; static bool report_on_cerr_on_assert_failure = true; struct eigen_assert_exception { eigen_assert_exception(void) {} ~eigen_assert_exception() { Eigen::no_more_assert = false; } }; struct eigen_static_assert_exception { eigen_static_assert_exception(void) {} ~eigen_static_assert_exception() { Eigen::no_more_assert = false; } }; } // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while // one should have been, then the list of executed assertions is printed out. // // EIGEN_DEBUG_ASSERTS is not enabled by default as it // significantly increases the compilation time // and might even introduce side effects that would hide // some memory errors. #ifdef EIGEN_DEBUG_ASSERTS namespace Eigen { namespace internal { static bool push_assert = false; } static std::vector eigen_assert_list; } #define eigen_assert(a) \ if( (!(a)) && (!no_more_assert) ) \ { \ if(report_on_cerr_on_assert_failure) \ std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ Eigen::no_more_assert = true; \ EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ } \ else if (Eigen::internal::push_assert) \ { \ eigen_assert_list.push_back(std::string(EIGEN_MAKESTRING(__FILE__) " (" EIGEN_MAKESTRING(__LINE__) ") : " #a) ); \ } #ifdef EIGEN_EXCEPTIONS #define VERIFY_RAISES_ASSERT(a) \ { \ Eigen::no_more_assert = false; \ Eigen::eigen_assert_list.clear(); \ Eigen::internal::push_assert = true; \ Eigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ std::cerr << "One of the following asserts should have been triggered:\n"; \ for (uint ai=0 ; ai // required for createRandomPIMatrixOfRank and generateRandomMatrixSvs inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) { if (!condition) { if(Eigen::g_test_level>0) std::cerr << "WARNING: "; std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" << std::endl << " " << condition_as_string << std::endl; std::cerr << "Stack:\n"; const int test_stack_size = static_cast(Eigen::g_test_stack.size()); for(int i=test_stack_size-1; i>=0; --i) std::cerr << " - " << Eigen::g_test_stack[i] << "\n"; std::cerr << "\n"; if(Eigen::g_test_level==0) abort(); } } #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a)) #define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a >= b)) #define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a <= b)) #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true)) #define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false)) #define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b)) #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) #define VERIFY_IS_CWISE_EQUAL(a, b) VERIFY(test_isCwiseApprox(a, b, true)) #define VERIFY_IS_CWISE_APPROX(a, b) VERIFY(test_isCwiseApprox(a, b, false)) #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) #define STATIC_CHECK(COND) EIGEN_STATIC_ASSERT( (COND) , EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT ) #define CALL_SUBTEST(FUNC) do { \ g_test_stack.push_back(EIGEN_MAKESTRING(FUNC)); \ FUNC; \ g_test_stack.pop_back(); \ } while (0) namespace Eigen { // Forward declarations to avoid ICC warnings template bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true); template void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m); template void randomPermutationVector(PermutationVectorType& v, Index size); template MatrixType generateRandomUnitaryMatrix(const Index dim); template void generateRandomMatrixSvs(const RealScalarVectorType &svs, const Index rows, const Index cols, MatrixType& M); template VectorType setupRandomSvs(const Index dim, const RealScalar max); template VectorType setupRangeSvs(const Index dim, const RealScalar min, const RealScalar max); } // end namespace Eigen // Forward declaration to avoid ICC warnings template std::string type_name(); namespace Eigen { template typename internal::enable_if::value,bool>::type is_same_type(const T1&, const T2&) { return true; } template inline typename NumTraits::Real test_precision() { return NumTraits::dummy_precision(); } template<> inline float test_precision() { return 1e-3f; } template<> inline double test_precision() { return 1e-6; } template<> inline long double test_precision() { return 1e-6l; } template<> inline float test_precision >() { return test_precision(); } template<> inline double test_precision >() { return test_precision(); } template<> inline long double test_precision >() { return test_precision(); } #define EIGEN_TEST_SCALAR_TEST_OVERLOAD(TYPE) \ inline bool test_isApprox(TYPE a, TYPE b) \ { return internal::isApprox(a, b, test_precision()); } \ inline bool test_isMuchSmallerThan(TYPE a, TYPE b) \ { return internal::isMuchSmallerThan(a, b, test_precision()); } \ inline bool test_isApproxOrLessThan(TYPE a, TYPE b) \ { return internal::isApproxOrLessThan(a, b, test_precision()); } EIGEN_TEST_SCALAR_TEST_OVERLOAD(short) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short) EIGEN_TEST_SCALAR_TEST_OVERLOAD(int) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned int) EIGEN_TEST_SCALAR_TEST_OVERLOAD(long) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long) #if EIGEN_HAS_CXX11 EIGEN_TEST_SCALAR_TEST_OVERLOAD(long long) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long long) #endif EIGEN_TEST_SCALAR_TEST_OVERLOAD(float) EIGEN_TEST_SCALAR_TEST_OVERLOAD(double) EIGEN_TEST_SCALAR_TEST_OVERLOAD(half) EIGEN_TEST_SCALAR_TEST_OVERLOAD(bfloat16) #undef EIGEN_TEST_SCALAR_TEST_OVERLOAD #ifndef EIGEN_TEST_NO_COMPLEX inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } #ifndef EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } #endif #endif #ifndef EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const long double& a, const long double& b) { bool ret = internal::isApprox(a, b, test_precision()); if (!ret) std::cerr << std::endl << " actual = " << a << std::endl << " expected = " << b << std::endl << std::endl; return ret; } inline bool test_isMuchSmallerThan(const long double& a, const long double& b) { return internal::isMuchSmallerThan(a, b, test_precision()); } inline bool test_isApproxOrLessThan(const long double& a, const long double& b) { return internal::isApproxOrLessThan(a, b, test_precision()); } #endif // EIGEN_TEST_NO_LONGDOUBLE // test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox. template typename NumTraits::NonInteger test_relative_error(const EigenBase &a, const EigenBase &b) { using std::sqrt; typedef typename NumTraits::NonInteger RealScalar; typename internal::nested_eval::type ea(a.derived()); typename internal::nested_eval::type eb(b.derived()); return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum()))); } template typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0) { return test_relative_error(a.coeffs(), b.coeffs()); } template typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0) { return test_relative_error(a.matrix(), b.matrix()); } template S test_relative_error(const Translation &a, const Translation &b) { return test_relative_error(a.vector(), b.vector()); } template S test_relative_error(const ParametrizedLine &a, const ParametrizedLine &b) { return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin())); } template S test_relative_error(const AlignedBox &a, const AlignedBox &b) { return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)())); } template class SparseMatrixBase; template typename T1::RealScalar test_relative_error(const MatrixBase &a, const SparseMatrixBase &b) { return test_relative_error(a,b.toDense()); } template class SparseMatrixBase; template typename T1::RealScalar test_relative_error(const SparseMatrixBase &a, const MatrixBase &b) { return test_relative_error(a.toDense(),b); } template class SparseMatrixBase; template typename T1::RealScalar test_relative_error(const SparseMatrixBase &a, const SparseMatrixBase &b) { return test_relative_error(a.toDense(),b.toDense()); } template typename NumTraits::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if::Real>::value, T1>::type* = 0) { typedef typename NumTraits::Real>::NonInteger RealScalar; return numext::sqrt(RealScalar(numext::abs2(a-b))/(numext::mini)(RealScalar(numext::abs2(a)),RealScalar(numext::abs2(b)))); } template T test_relative_error(const Rotation2D &a, const Rotation2D &b) { return test_relative_error(a.angle(), b.angle()); } template T test_relative_error(const AngleAxis &a, const AngleAxis &b) { return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis())); } template inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only { return a.isApprox(b, test_precision()); } // get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions template typename NumTraits::Real get_test_precision(const T&, const typename T::Scalar* = 0) { return test_precision::Real>(); } template typename NumTraits::Real get_test_precision(const T&,typename internal::enable_if::Real>::value, T>::type* = 0) { return test_precision::Real>(); } // verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails. template inline bool verifyIsApprox(const Type1& a, const Type2& b) { bool ret = test_isApprox(a,b); if(!ret) { std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a,b) << std::endl; } return ret; } // The idea behind this function is to compare the two scalars a and b where // the scalar ref is a hint about the expected order of magnitude of a and b. // WARNING: the scalar a and b must be positive // Therefore, if for some reason a and b are very small compared to ref, // we won't issue a false negative. // This test could be: abs(a-b) <= eps * ref // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error. template inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) { return test_isApprox(a+ref, b+ref); } template inline bool test_isMuchSmallerThan(const MatrixBase& m1, const MatrixBase& m2) { return m1.isMuchSmallerThan(m2, test_precision::Scalar>()); } template inline bool test_isMuchSmallerThan(const MatrixBase& m, const typename NumTraits::Scalar>::Real& s) { return m.isMuchSmallerThan(s, test_precision::Scalar>()); } template inline bool test_isUnitary(const MatrixBase& m) { return m.isUnitary(test_precision::Scalar>()); } // Checks component-wise, works with infs and nans. template bool test_isCwiseApprox(const DenseBase& m1, const DenseBase& m2, bool exact) { if (m1.rows() != m2.rows()) { return false; } if (m1.cols() != m2.cols()) { return false; } for (Index r = 0; r < m1.rows(); ++r) { for (Index c = 0; c < m1.cols(); ++c) { if (m1(r, c) != m2(r, c) && !((numext::isnan)(m1(r, c)) && (numext::isnan)(m2(r, c))) && (exact || !test_isApprox(m1(r, c), m2(r, c)))) { return false; } } } return true; } template bool test_is_equal(const T& actual, const U& expected, bool expect_equal) { if ((actual==expected) == expect_equal) return true; // false: std::cerr << "\n actual = " << actual << "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n"; return false; } // Forward declaration to avoid ICC warning template void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m); /** * Creates a random partial isometry matrix of given rank. * * A partial isometry is a matrix all of whose singular values are either 0 or 1. * This is very useful to test rank-revealing algorithms. * * @tparam MatrixType type of random partial isometry matrix * @param desired_rank rank requested for the random partial isometry matrix * @param rows row dimension of requested random partial isometry matrix * @param cols column dimension of requested random partial isometry matrix * @param m random partial isometry matrix */ template void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m) { typedef typename internal::traits::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef Matrix VectorType; typedef Matrix MatrixAType; typedef Matrix MatrixBType; if(desired_rank == 0) { m.setZero(rows,cols); return; } if(desired_rank == 1) { // here we normalize the vectors to get a partial isometry m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); return; } MatrixAType a = MatrixAType::Random(rows,rows); MatrixType d = MatrixType::Identity(rows,cols); MatrixBType b = MatrixBType::Random(cols,cols); // set the diagonal such that only desired_rank non-zero entries remain const Index diag_size = (std::min)(d.rows(),d.cols()); if(diag_size != desired_rank) d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); HouseholderQR qra(a); HouseholderQR qrb(b); m = qra.householderQ() * d * qrb.householderQ(); } // Forward declaration to avoid ICC warning template void randomPermutationVector(PermutationVectorType& v, Index size); /** * Generate random permutation vector. * * @tparam PermutationVectorType type of vector used to store permutation * @param v permutation vector * @param size length of permutation vector */ template void randomPermutationVector(PermutationVectorType& v, Index size) { typedef typename PermutationVectorType::Scalar Scalar; v.resize(size); for(Index i = 0; i < size; ++i) v(i) = Scalar(i); if(size == 1) return; for(Index n = 0; n < 3 * size; ++n) { Index i = internal::random(0, size-1); Index j; do j = internal::random(0, size-1); while(j==i); std::swap(v(i), v(j)); } } /** * Generate a random unitary matrix of prescribed dimension. * * The algorithm is using a random Householder sequence to produce * a random unitary matrix. * * @tparam MatrixType type of matrix to generate * @param dim row and column dimension of the requested square matrix * @return random unitary matrix */ template MatrixType generateRandomUnitaryMatrix(const Index dim) { typedef typename internal::traits::Scalar Scalar; typedef Matrix VectorType; MatrixType v = MatrixType::Identity(dim, dim); VectorType h = VectorType::Zero(dim); for (Index i = 0; i < dim; ++i) { v.col(i).tail(dim - i - 1) = VectorType::Random(dim - i - 1); h(i) = 2 / v.col(i).tail(dim - i).squaredNorm(); } const Eigen::HouseholderSequence HSeq(v, h); return MatrixType(HSeq); } /** * Generation of random matrix with prescribed singular values. * * We generate random matrices with given singular values by setting up * a singular value decomposition. By choosing the number of zeros as * singular values we can specify the rank of the matrix. * Moreover, we also control its spectral norm, which is the largest * singular value, as well as its condition number with respect to the * l2-norm, which is the quotient of the largest and smallest singular * value. * * Reference: For details on the method see e.g. Section 8.1 (pp. 62 f) in * * C. C. Paige, M. A. Saunders, * LSQR: An algorithm for sparse linear equations and sparse least squares. * ACM Transactions on Mathematical Software 8(1), pp. 43-71, 1982. * https://web.stanford.edu/group/SOL/software/lsqr/lsqr-toms82a.pdf * * and also the LSQR webpage https://web.stanford.edu/group/SOL/software/lsqr/. * * @tparam MatrixType matrix type to generate * @tparam RealScalarVectorType vector type with real entries used for singular values * @param svs vector of desired singular values * @param rows row dimension of requested random matrix * @param cols column dimension of requested random matrix * @param M generated matrix with prescribed singular values */ template void generateRandomMatrixSvs(const RealScalarVectorType &svs, const Index rows, const Index cols, MatrixType& M) { enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef typename internal::traits::Scalar Scalar; typedef Matrix MatrixAType; typedef Matrix MatrixBType; const Index min_dim = (std::min)(rows, cols); const MatrixAType U = generateRandomUnitaryMatrix(rows); const MatrixBType V = generateRandomUnitaryMatrix(cols); M = U.block(0, 0, rows, min_dim) * svs.asDiagonal() * V.block(0, 0, cols, min_dim).transpose(); } /** * Setup a vector of random singular values with prescribed upper limit. * For use with generateRandomMatrixSvs(). * * Singular values are non-negative real values. By convention (to be consistent with * singular value decomposition) we sort them in decreasing order. * * This strategy produces random singular values in the range [0, max], in particular * the singular values can be zero or arbitrarily close to zero. * * @tparam VectorType vector type with real entries used for singular values * @tparam RealScalar data type used for real entry * @param dim number of singular values to generate * @param max upper bound for singular values * @return vector of singular values */ template VectorType setupRandomSvs(const Index dim, const RealScalar max) { VectorType svs = max / RealScalar(2) * (VectorType::Random(dim) + VectorType::Ones(dim)); std::sort(svs.begin(), svs.end(), std::greater()); return svs; } /** * Setup a vector of random singular values with prescribed range. * For use with generateRandomMatrixSvs(). * * Singular values are non-negative real values. By convention (to be consistent with * singular value decomposition) we sort them in decreasing order. * * For dim > 1 this strategy generates a vector with largest entry max, smallest entry * min, and remaining entries in the range [min, max]. For dim == 1 the only entry is * min. * * @tparam VectorType vector type with real entries used for singular values * @tparam RealScalar data type used for real entry * @param dim number of singular values to generate * @param min smallest singular value to use * @param max largest singular value to use * @return vector of singular values */ template VectorType setupRangeSvs(const Index dim, const RealScalar min, const RealScalar max) { VectorType svs = VectorType::Random(dim); if(dim == 0) return svs; if(dim == 1) { svs(0) = min; return svs; } std::sort(svs.begin(), svs.end(), std::greater()); // scale to range [min, max] const RealScalar c_min = svs(dim - 1), c_max = svs(0); svs = (svs - VectorType::Constant(dim, c_min)) / (c_max - c_min); return min * (VectorType::Ones(dim) - svs) + max * svs; } /** * Check if number is "not a number" (NaN). * * @tparam T input type * @param x input value * @return true, if input value is "not a number" (NaN) */ template bool isNotNaN(const T& x) { return x==x; } /** * Check if number is plus infinity. * * @tparam T input type * @param x input value * @return true, if input value is plus infinity */ template bool isPlusInf(const T& x) { return x > NumTraits::highest(); } /** * Check if number is minus infinity. * * @tparam T input type * @param x input value * @return true, if input value is minus infinity */ template bool isMinusInf(const T& x) { return x < NumTraits::lowest(); } } // end namespace Eigen template struct GetDifferentType; template<> struct GetDifferentType { typedef double type; }; template<> struct GetDifferentType { typedef float type; }; template struct GetDifferentType > { typedef std::complex::type> type; }; template std::string type_name() { return "other"; } template<> std::string type_name() { return "float"; } template<> std::string type_name() { return "double"; } template<> std::string type_name() { return "long double"; } template<> std::string type_name() { return "int"; } template<> std::string type_name >() { return "complex"; } template<> std::string type_name >() { return "complex"; } template<> std::string type_name >() { return "complex"; } template<> std::string type_name >() { return "complex"; } using namespace Eigen; /** * Set number of repetitions for unit test from input string. * * @param str input string */ inline void set_repeat_from_string(const char *str) { errno = 0; g_repeat = int(strtoul(str, 0, 10)); if(errno || g_repeat <= 0) { std::cout << "Invalid repeat value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_repeat = true; } /** * Set seed for randomized unit tests from input string. * * @param str input string */ inline void set_seed_from_string(const char *str) { errno = 0; g_seed = int(strtoul(str, 0, 10)); if(errno || g_seed == 0) { std::cout << "Invalid seed value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_seed = true; } int main(int argc, char *argv[]) { g_has_set_repeat = false; g_has_set_seed = false; bool need_help = false; for(int i = 1; i < argc; i++) { if(argv[i][0] == 'r') { if(g_has_set_repeat) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_repeat_from_string(argv[i]+1); } else if(argv[i][0] == 's') { if(g_has_set_seed) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_seed_from_string(argv[i]+1); } else { need_help = true; } } if(need_help) { std::cout << "This test application takes the following optional arguments:" << std::endl; std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; std::cout << std::endl; std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; std::cout << "will be used as default values for these parameters." << std::endl; return 1; } char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); if(!g_has_set_repeat && env_EIGEN_REPEAT) set_repeat_from_string(env_EIGEN_REPEAT); char *env_EIGEN_SEED = getenv("EIGEN_SEED"); if(!g_has_set_seed && env_EIGEN_SEED) set_seed_from_string(env_EIGEN_SEED); if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; std::cout << "Initializing random number generator with seed " << g_seed << std::endl; std::stringstream ss; ss << "Seed: " << g_seed; g_test_stack.push_back(ss.str()); srand(g_seed); std::cout << "Repeating each test " << g_repeat << " times" << std::endl; VERIFY(EigenTest::all().size()>0); for(std::size_t i=0; i this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector // remark #1418: external function definition with no prior declaration // -> this warning is raised for all our test functions. Declaring them static would fix the issue. // warning #279: controlling expression is constant // remark #1572: floating-point equality and inequality comparisons are unreliable #pragma warning disable 279 383 1418 1572 #endif #ifdef _MSC_VER // 4503 - decorated name length exceeded, name was truncated #pragma warning( disable : 4503) #endif #include "gpu_test_helper.h"