// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli #include #include "main.h" #include int fcn_chkder(const VectorXd &x, VectorXd &fvec, MatrixXd &fjac, int iflag) { /* subroutine fcn for chkder example. */ int i; assert(15 == fvec.size()); assert(3 == x.size()); double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) return 0; if (iflag != 2) for (i=0; i<15; i++) { tmp1 = i+1; tmp2 = 16-i-1; tmp3 = tmp1; if (i >= 8) tmp3 = tmp2; fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); } else { for (i = 0; i < 15; i++) { tmp1 = i+1; tmp2 = 16-i-1; /* error introduced into next statement for illustration. */ /* corrected statement should read tmp3 = tmp1 . */ tmp3 = tmp2; if (i >= 8) tmp3 = tmp2; tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4=tmp4*tmp4; fjac(i,0) = -1.; fjac(i,1) = tmp1*tmp2/tmp4; fjac(i,2) = tmp1*tmp3/tmp4; } } return 0; } void testChkder() { const int m=15, n=3; VectorXd x(n), fvec(m), xp, fvecp(m), err; MatrixXd fjac(m,n); VectorXi ipvt; /* the following values should be suitable for */ /* checking the jacobian matrix. */ x << 9.2e-1, 1.3e-1, 5.4e-1; ei_chkder(x, fvec, fjac, xp, fvecp, 1, err); fcn_chkder(x, fvec, fjac, 1); fcn_chkder(x, fvec, fjac, 2); fcn_chkder(xp, fvecp, fjac, 1); ei_chkder(x, fvec, fjac, xp, fvecp, 2, err); fvecp -= fvec; // check those VectorXd fvec_ref(m), fvecp_ref(m), err_ref(m); fvec_ref << -1.181606, -1.429655, -1.606344, -1.745269, -1.840654, -1.921586, -1.984141, -2.022537, -2.468977, -2.827562, -3.473582, -4.437612, -6.047662, -9.267761, -18.91806; fvecp_ref << -7.724666e-09, -3.432406e-09, -2.034843e-10, 2.313685e-09, 4.331078e-09, 5.984096e-09, 7.363281e-09, 8.53147e-09, 1.488591e-08, 2.33585e-08, 3.522012e-08, 5.301255e-08, 8.26666e-08, 1.419747e-07, 3.19899e-07; err_ref << 0.1141397, 0.09943516, 0.09674474, 0.09980447, 0.1073116, 0.1220445, 0.1526814, 1, 1, 1, 1, 1, 1, 1, 1; VERIFY_IS_APPROX(fvec, fvec_ref); VERIFY_IS_APPROX(fvecp, fvecp_ref); VERIFY_IS_APPROX(err, err_ref); } // Generic functor template struct Functor { typedef _Scalar Scalar; enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; typedef Matrix InputType; typedef Matrix ValueType; typedef Matrix JacobianType; int m_inputs, m_values; Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {} int inputs() const { return m_inputs; } int values() const { return m_values; } // you should define that in the subclass : // void operator() (const InputType& x, ValueType* v, JacobianType* _j=0) const; }; /** * This functor example uses non-static members, see other ones for static * methods */ struct lmder_functor : Functor { int operator()(const VectorXd &x, VectorXd &fvec) const { double tmp1, tmp2, tmp3; double y[ValuesAtCompileTime] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; for (int i = 0; i < ValuesAtCompileTime; i++) { tmp1 = i+1; tmp2 = 16 - i - 1; tmp3 = (i>=8)? tmp2 : tmp1; fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); } return 0; } int df(const VectorXd &x, MatrixXd &fjac) const { double tmp1, tmp2, tmp3, tmp4; for (int i = 0; i < ValuesAtCompileTime; i++) { tmp1 = i+1; tmp2 = 16 - i - 1; tmp3 = (i>=8)? tmp2 : tmp1; tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4; fjac(i,0) = -1; fjac(i,1) = tmp1*tmp2/tmp4; fjac(i,2) = tmp1*tmp3/tmp4; } return 0; } }; void testLmder1() { int n=3, info; VectorXd x; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation lmder_functor functor; LevenbergMarquardt lm(functor); info = lm.lmder1(x); // check return value VERIFY( 1 == info); VERIFY(lm.nfev==6); VERIFY(lm.njev==5); // check norm VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); } void testLmder() { const int m=15, n=3; int info; double fnorm, covfac; VectorXd x; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation lmder_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return values VERIFY( 1 == info); VERIFY(lm.nfev==6); VERIFY(lm.njev==5); // check norm fnorm = lm.fvec.blueNorm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); // check covariance covfac = fnorm*fnorm/(m-n); ei_covar(lm.fjac, lm.ipvt); // TODO : move this as a function of lm MatrixXd cov_ref(n,n); cov_ref << 0.0001531202, 0.002869941, -0.002656662, 0.002869941, 0.09480935, -0.09098995, -0.002656662, -0.09098995, 0.08778727; // std::cout << fjac*covfac << std::endl; MatrixXd cov; cov = covfac*lm.fjac.corner(TopLeft); VERIFY_IS_APPROX( cov, cov_ref); // TODO: why isn't this allowed ? : // VERIFY_IS_APPROX( covfac*fjac.corner(TopLeft) , cov_ref); } /** * This functor example uses static members, see lmder_functor for an * example of a non-static functor. */ struct hybrj_functor : Functor { int operator()(const VectorXd &x, VectorXd &fvec) { double temp, temp1, temp2; const int n = x.size(); assert(fvec.size()==n); for (int k = 0; k < n; k++) { temp = (3. - 2.*x[k])*x[k]; temp1 = 0.; if (k) temp1 = x[k-1]; temp2 = 0.; if (k != n-1) temp2 = x[k+1]; fvec[k] = temp - temp1 - 2.*temp2 + 1.; } return 0; } int df(const VectorXd &x, MatrixXd &fjac) { const int n = x.size(); assert(fjac.rows()==n); assert(fjac.cols()==n); for (int k = 0; k < n; k++) { for (int j = 0; j < n; j++) fjac(k,j) = 0.; fjac(k,k) = 3.- 4.*x[k]; if (k) fjac(k,k-1) = -1.; if (k != n-1) fjac(k,k+1) = -2.; } return 0; } }; void testHybrj1() { const int n=9; int info; VectorXd x(n); /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); // do the computation hybrj_functor functor; HybridNonLinearSolver solver(functor); info = solver.hybrj1(x); // check return value VERIFY( 1 == info); VERIFY(solver.nfev==11); VERIFY(solver.njev==1); // check norm VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } void testHybrj() { const int n=9; int info; VectorXd x(n); /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); // do the computation hybrj_functor functor; HybridNonLinearSolver solver(functor); solver.diag.setConstant(n, 1.); info = solver.solve(x, 2); // check return value VERIFY( 1 == info); VERIFY(solver.nfev==11); VERIFY(solver.njev==1); // check norm VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct hybrd_functor : Functor { int operator()(const VectorXd &x, VectorXd &fvec) const { double temp, temp1, temp2; const int n = x.size(); assert(fvec.size()==n); for (int k=0; k < n; k++) { temp = (3. - 2.*x[k])*x[k]; temp1 = 0.; if (k) temp1 = x[k-1]; temp2 = 0.; if (k != n-1) temp2 = x[k+1]; fvec[k] = temp - temp1 - 2.*temp2 + 1.; } return 0; } }; void testHybrd1() { int n=9, info; VectorXd x(n); /* the following starting values provide a rough solution. */ x.setConstant(n, -1.); // do the computation hybrd_functor functor; HybridNonLinearSolver solver(functor); info = solver.hybrd1(x); // check return value VERIFY( 1 == info); VERIFY(solver.nfev==20); // check norm VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } void testHybrd() { const int n=9; int info; VectorXd x; /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); // do the computation hybrd_functor functor; HybridNonLinearSolver solver(functor); solver.parameters.nb_of_subdiagonals = 1; solver.parameters.nb_of_superdiagonals = 1; solver.diag.setConstant(n, 1.); info = solver.solveNumericalDiff(x, 2); // check return value VERIFY( 1 == info); VERIFY(solver.nfev==14); // check norm VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct lmstr_functor : Functor { int operator()(const VectorXd &x, VectorXd &fvec) { /* subroutine fcn for lmstr1 example. */ double tmp1, tmp2, tmp3; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; assert(15==fvec.size()); assert(3==x.size()); for (int i=0; i<15; i++) { tmp1 = i+1; tmp2 = 16 - i - 1; tmp3 = (i>=8)? tmp2 : tmp1; fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); } return 0; } int df(const VectorXd &x, VectorXd &jac_row, int rownb) { assert(x.size()==3); assert(jac_row.size()==x.size()); double tmp1, tmp2, tmp3, tmp4; int i = rownb-2; tmp1 = i+1; tmp2 = 16 - i - 1; tmp3 = (i>=8)? tmp2 : tmp1; tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4; jac_row[0] = -1; jac_row[1] = tmp1*tmp2/tmp4; jac_row[2] = tmp1*tmp3/tmp4; return 0; } }; void testLmstr1() { const int n=3; int info; VectorXd x(n); /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation lmstr_functor functor; LevenbergMarquardt lm(functor); info = lm.lmstr1(x); // check return value VERIFY( 1 == info); VERIFY(lm.nfev==6); VERIFY(lm.njev==5); // check norm VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695 ; VERIFY_IS_APPROX(x, x_ref); } void testLmstr() { const int n=3; int info; double fnorm; VectorXd x(n); /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation lmstr_functor functor; LevenbergMarquardt lm(functor); info = lm.minimizeOptimumStorage(x); // check return values VERIFY( 1 == info); VERIFY(lm.nfev==6); VERIFY(lm.njev==5); // check norm fnorm = lm.fvec.blueNorm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); } struct lmdif_functor : Functor { int operator()(const VectorXd &x, VectorXd &fvec) const { /* function fcn for lmdif1 example */ int i; double tmp1,tmp2,tmp3; double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1, 3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0}; assert(x.size()==3); assert(fvec.size()==15); for (i=0; i<15; i++) { tmp1 = i+1; tmp2 = 15 - i; tmp3 = tmp1; if (i >= 8) tmp3 = tmp2; fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); } return 0; } }; void testLmdif1() { const int n=3; int info; VectorXd x(n); /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation lmdif_functor functor; LevenbergMarquardt lm(functor); info = lm.lmdif1(x); // check return value VERIFY( 1 == info); VERIFY(lm.nfev==21); // check norm VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.0824106, 1.1330366, 2.3436947; VERIFY_IS_APPROX(x, x_ref); } void testLmdif() { const int m=15, n=3; int info; double fnorm, covfac; VectorXd x(n); /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation lmdif_functor functor; LevenbergMarquardt lm(functor); info = lm.minimizeNumericalDiff(x); // check return values VERIFY( 1 == info); VERIFY(lm.nfev==21); // check norm fnorm = lm.fvec.blueNorm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); // check covariance covfac = fnorm*fnorm/(m-n); ei_covar(lm.fjac, lm.ipvt); MatrixXd cov_ref(n,n); cov_ref << 0.0001531202, 0.002869942, -0.002656662, 0.002869942, 0.09480937, -0.09098997, -0.002656662, -0.09098997, 0.08778729; // std::cout << fjac*covfac << std::endl; MatrixXd cov; cov = covfac*lm.fjac.corner(TopLeft); VERIFY_IS_APPROX( cov, cov_ref); // TODO: why isn't this allowed ? : // VERIFY_IS_APPROX( covfac*fjac.corner(TopLeft) , cov_ref); } struct chwirut2_functor : Functor { static const double m_x[54]; static const double m_y[54]; int operator()(const VectorXd &b, VectorXd &fvec) { int i; assert(b.size()==3); assert(fvec.size()==54); for(i=0; i<54; i++) { double x = m_x[i]; fvec[i] = exp(-b[0]*x)/(b[1]+b[2]*x) - m_y[i]; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==3); assert(fjac.rows()==54); assert(fjac.cols()==3); for(int i=0; i<54; i++) { double x = m_x[i]; double factor = 1./(b[1]+b[2]*x); double e = exp(-b[0]*x); fjac(i,0) = -x*e*factor; fjac(i,1) = -e*factor*factor; fjac(i,2) = -x*e*factor*factor; } return 0; } }; const double chwirut2_functor::m_x[54] = { 0.500E0, 1.000E0, 1.750E0, 3.750E0, 5.750E0, 0.875E0, 2.250E0, 3.250E0, 5.250E0, 0.750E0, 1.750E0, 2.750E0, 4.750E0, 0.625E0, 1.250E0, 2.250E0, 4.250E0, .500E0, 3.000E0, .750E0, 3.000E0, 1.500E0, 6.000E0, 3.000E0, 6.000E0, 1.500E0, 3.000E0, .500E0, 2.000E0, 4.000E0, .750E0, 2.000E0, 5.000E0, .750E0, 2.250E0, 3.750E0, 5.750E0, 3.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .500E0, 6.000E0, 3.000E0, .500E0, 2.750E0, .500E0, 1.750E0}; const double chwirut2_functor::m_y[54] = { 92.9000E0 ,57.1000E0 ,31.0500E0 ,11.5875E0 ,8.0250E0 ,63.6000E0 ,21.4000E0 ,14.2500E0 ,8.4750E0 ,63.8000E0 ,26.8000E0 ,16.4625E0 ,7.1250E0 ,67.3000E0 ,41.0000E0 ,21.1500E0 ,8.1750E0 ,81.5000E0 ,13.1200E0 ,59.9000E0 ,14.6200E0 ,32.9000E0 ,5.4400E0 ,12.5600E0 ,5.4400E0 ,32.0000E0 ,13.9500E0 ,75.8000E0 ,20.0000E0 ,10.4200E0 ,59.5000E0 ,21.6700E0 ,8.5500E0 ,62.0000E0 ,20.2000E0 ,7.7600E0 ,3.7500E0 ,11.8100E0 ,54.7000E0 ,23.7000E0 ,11.5500E0 ,61.3000E0 ,17.7000E0 ,8.7400E0 ,59.2000E0 ,16.3000E0 ,8.6200E0 ,81.0000E0 ,4.8700E0 ,14.6200E0 ,81.7000E0 ,17.1700E0 ,81.3000E0 ,28.9000E0 }; // http://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml void testNistChwirut2(void) { const int n=3; int info; VectorXd x(n); /* * First try */ x<< 0.1, 0.01, 0.02; // do the computation chwirut2_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 10 == lm.nfev); VERIFY( 8 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02); // check x VERIFY_IS_APPROX(x[0], 1.6657666537E-01); VERIFY_IS_APPROX(x[1], 5.1653291286E-03); VERIFY_IS_APPROX(x[2], 1.2150007096E-02); /* * Second try */ x<< 0.15, 0.008, 0.010; // do the computation lm.resetParameters(); lm.parameters.ftol = 1.E6*epsilon(); lm.parameters.xtol = 1.E6*epsilon(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 7 == lm.nfev); VERIFY( 6 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02); // check x VERIFY_IS_APPROX(x[0], 1.6657666537E-01); VERIFY_IS_APPROX(x[1], 5.1653291286E-03); VERIFY_IS_APPROX(x[2], 1.2150007096E-02); } struct misra1a_functor : Functor { static const double m_x[14]; static const double m_y[14]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==2); assert(fvec.size()==14); for(int i=0; i<14; i++) { fvec[i] = b[0]*(1.-exp(-b[1]*m_x[i])) - m_y[i] ; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==2); assert(fjac.rows()==14); assert(fjac.cols()==2); for(int i=0; i<14; i++) { fjac(i,0) = (1.-exp(-b[1]*m_x[i])); fjac(i,1) = (b[0]*m_x[i]*exp(-b[1]*m_x[i])); } return 0; } }; const double misra1a_functor::m_x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0}; const double misra1a_functor::m_y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0}; // http://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml void testNistMisra1a(void) { const int n=2; int info; VectorXd x(n); /* * First try */ x<< 500., 0.0001; // do the computation misra1a_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 19 == lm.nfev); VERIFY( 15 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01); // check x VERIFY_IS_APPROX(x[0], 2.3894212918E+02); VERIFY_IS_APPROX(x[1], 5.5015643181E-04); /* * Second try */ x<< 250., 0.0005; // do the computation info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 5 == lm.nfev); VERIFY( 4 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01); // check x VERIFY_IS_APPROX(x[0], 2.3894212918E+02); VERIFY_IS_APPROX(x[1], 5.5015643181E-04); } struct hahn1_functor : Functor { static const double m_x[236]; int operator()(const VectorXd &b, VectorXd &fvec) { static const double m_y[236] = { .591E0 , 1.547E0 , 2.902E0 , 2.894E0 , 4.703E0 , 6.307E0 , 7.03E0 , 7.898E0 , 9.470E0 , 9.484E0 , 10.072E0 , 10.163E0 , 11.615E0 , 12.005E0 , 12.478E0 , 12.982E0 , 12.970E0 , 13.926E0 , 14.452E0 , 14.404E0 , 15.190E0 , 15.550E0 , 15.528E0 , 15.499E0 , 16.131E0 , 16.438E0 , 16.387E0 , 16.549E0 , 16.872E0 , 16.830E0 , 16.926E0 , 16.907E0 , 16.966E0 , 17.060E0 , 17.122E0 , 17.311E0 , 17.355E0 , 17.668E0 , 17.767E0 , 17.803E0 , 17.765E0 , 17.768E0 , 17.736E0 , 17.858E0 , 17.877E0 , 17.912E0 , 18.046E0 , 18.085E0 , 18.291E0 , 18.357E0 , 18.426E0 , 18.584E0 , 18.610E0 , 18.870E0 , 18.795E0 , 19.111E0 , .367E0 , .796E0 , 0.892E0 , 1.903E0 , 2.150E0 , 3.697E0 , 5.870E0 , 6.421E0 , 7.422E0 , 9.944E0 , 11.023E0 , 11.87E0 , 12.786E0 , 14.067E0 , 13.974E0 , 14.462E0 , 14.464E0 , 15.381E0 , 15.483E0 , 15.59E0 , 16.075E0 , 16.347E0 , 16.181E0 , 16.915E0 , 17.003E0 , 16.978E0 , 17.756E0 , 17.808E0 , 17.868E0 , 18.481E0 , 18.486E0 , 19.090E0 , 16.062E0 , 16.337E0 , 16.345E0 , 16.388E0 , 17.159E0 , 17.116E0 , 17.164E0 , 17.123E0 , 17.979E0 , 17.974E0 , 18.007E0 , 17.993E0 , 18.523E0 , 18.669E0 , 18.617E0 , 19.371E0 , 19.330E0 , 0.080E0 , 0.248E0 , 1.089E0 , 1.418E0 , 2.278E0 , 3.624E0 , 4.574E0 , 5.556E0 , 7.267E0 , 7.695E0 , 9.136E0 , 9.959E0 , 9.957E0 , 11.600E0 , 13.138E0 , 13.564E0 , 13.871E0 , 13.994E0 , 14.947E0 , 15.473E0 , 15.379E0 , 15.455E0 , 15.908E0 , 16.114E0 , 17.071E0 , 17.135E0 , 17.282E0 , 17.368E0 , 17.483E0 , 17.764E0 , 18.185E0 , 18.271E0 , 18.236E0 , 18.237E0 , 18.523E0 , 18.627E0 , 18.665E0 , 19.086E0 , 0.214E0 , 0.943E0 , 1.429E0 , 2.241E0 , 2.951E0 , 3.782E0 , 4.757E0 , 5.602E0 , 7.169E0 , 8.920E0 , 10.055E0 , 12.035E0 , 12.861E0 , 13.436E0 , 14.167E0 , 14.755E0 , 15.168E0 , 15.651E0 , 15.746E0 , 16.216E0 , 16.445E0 , 16.965E0 , 17.121E0 , 17.206E0 , 17.250E0 , 17.339E0 , 17.793E0 , 18.123E0 , 18.49E0 , 18.566E0 , 18.645E0 , 18.706E0 , 18.924E0 , 19.1E0 , 0.375E0 , 0.471E0 , 1.504E0 , 2.204E0 , 2.813E0 , 4.765E0 , 9.835E0 , 10.040E0 , 11.946E0 , 12.596E0 , 13.303E0 , 13.922E0 , 14.440E0 , 14.951E0 , 15.627E0 , 15.639E0 , 15.814E0 , 16.315E0 , 16.334E0 , 16.430E0 , 16.423E0 , 17.024E0 , 17.009E0 , 17.165E0 , 17.134E0 , 17.349E0 , 17.576E0 , 17.848E0 , 18.090E0 , 18.276E0 , 18.404E0 , 18.519E0 , 19.133E0 , 19.074E0 , 19.239E0 , 19.280E0 , 19.101E0 , 19.398E0 , 19.252E0 , 19.89E0 , 20.007E0 , 19.929E0 , 19.268E0 , 19.324E0 , 20.049E0 , 20.107E0 , 20.062E0 , 20.065E0 , 19.286E0 , 19.972E0 , 20.088E0 , 20.743E0 , 20.83E0 , 20.935E0 , 21.035E0 , 20.93E0 , 21.074E0 , 21.085E0 , 20.935E0 }; // int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++; assert(b.size()==7); assert(fvec.size()==236); for(int i=0; i<236; i++) { double x=m_x[i], xx=x*x, xxx=xx*x; fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - m_y[i]; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==7); assert(fjac.rows()==236); assert(fjac.cols()==7); for(int i=0; i<236; i++) { double x=m_x[i], xx=x*x, xxx=xx*x; double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx); fjac(i,0) = 1.*fact; fjac(i,1) = x*fact; fjac(i,2) = xx*fact; fjac(i,3) = xxx*fact; fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact; fjac(i,4) = x*fact; fjac(i,5) = xx*fact; fjac(i,6) = xxx*fact; } return 0; } }; const double hahn1_functor::m_x[236] = { 24.41E0 , 34.82E0 , 44.09E0 , 45.07E0 , 54.98E0 , 65.51E0 , 70.53E0 , 75.70E0 , 89.57E0 , 91.14E0 , 96.40E0 , 97.19E0 , 114.26E0 , 120.25E0 , 127.08E0 , 133.55E0 , 133.61E0 , 158.67E0 , 172.74E0 , 171.31E0 , 202.14E0 , 220.55E0 , 221.05E0 , 221.39E0 , 250.99E0 , 268.99E0 , 271.80E0 , 271.97E0 , 321.31E0 , 321.69E0 , 330.14E0 , 333.03E0 , 333.47E0 , 340.77E0 , 345.65E0 , 373.11E0 , 373.79E0 , 411.82E0 , 419.51E0 , 421.59E0 , 422.02E0 , 422.47E0 , 422.61E0 , 441.75E0 , 447.41E0 , 448.7E0 , 472.89E0 , 476.69E0 , 522.47E0 , 522.62E0 , 524.43E0 , 546.75E0 , 549.53E0 , 575.29E0 , 576.00E0 , 625.55E0 , 20.15E0 , 28.78E0 , 29.57E0 , 37.41E0 , 39.12E0 , 50.24E0 , 61.38E0 , 66.25E0 , 73.42E0 , 95.52E0 , 107.32E0 , 122.04E0 , 134.03E0 , 163.19E0 , 163.48E0 , 175.70E0 , 179.86E0 , 211.27E0 , 217.78E0 , 219.14E0 , 262.52E0 , 268.01E0 , 268.62E0 , 336.25E0 , 337.23E0 , 339.33E0 , 427.38E0 , 428.58E0 , 432.68E0 , 528.99E0 , 531.08E0 , 628.34E0 , 253.24E0 , 273.13E0 , 273.66E0 , 282.10E0 , 346.62E0 , 347.19E0 , 348.78E0 , 351.18E0 , 450.10E0 , 450.35E0 , 451.92E0 , 455.56E0 , 552.22E0 , 553.56E0 , 555.74E0 , 652.59E0 , 656.20E0 , 14.13E0 , 20.41E0 , 31.30E0 , 33.84E0 , 39.70E0 , 48.83E0 , 54.50E0 , 60.41E0 , 72.77E0 , 75.25E0 , 86.84E0 , 94.88E0 , 96.40E0 , 117.37E0 , 139.08E0 , 147.73E0 , 158.63E0 , 161.84E0 , 192.11E0 , 206.76E0 , 209.07E0 , 213.32E0 , 226.44E0 , 237.12E0 , 330.90E0 , 358.72E0 , 370.77E0 , 372.72E0 , 396.24E0 , 416.59E0 , 484.02E0 , 495.47E0 , 514.78E0 , 515.65E0 , 519.47E0 , 544.47E0 , 560.11E0 , 620.77E0 , 18.97E0 , 28.93E0 , 33.91E0 , 40.03E0 , 44.66E0 , 49.87E0 , 55.16E0 , 60.90E0 , 72.08E0 , 85.15E0 , 97.06E0 , 119.63E0 , 133.27E0 , 143.84E0 , 161.91E0 , 180.67E0 , 198.44E0 , 226.86E0 , 229.65E0 , 258.27E0 , 273.77E0 , 339.15E0 , 350.13E0 , 362.75E0 , 371.03E0 , 393.32E0 , 448.53E0 , 473.78E0 , 511.12E0 , 524.70E0 , 548.75E0 , 551.64E0 , 574.02E0 , 623.86E0 , 21.46E0 , 24.33E0 , 33.43E0 , 39.22E0 , 44.18E0 , 55.02E0 , 94.33E0 , 96.44E0 , 118.82E0 , 128.48E0 , 141.94E0 , 156.92E0 , 171.65E0 , 190.00E0 , 223.26E0 , 223.88E0 , 231.50E0 , 265.05E0 , 269.44E0 , 271.78E0 , 273.46E0 , 334.61E0 , 339.79E0 , 349.52E0 , 358.18E0 , 377.98E0 , 394.77E0 , 429.66E0 , 468.22E0 , 487.27E0 , 519.54E0 , 523.03E0 , 612.99E0 , 638.59E0 , 641.36E0 , 622.05E0 , 631.50E0 , 663.97E0 , 646.9E0 , 748.29E0 , 749.21E0 , 750.14E0 , 647.04E0 , 646.89E0 , 746.9E0 , 748.43E0 , 747.35E0 , 749.27E0 , 647.61E0 , 747.78E0 , 750.51E0 , 851.37E0 , 845.97E0 , 847.54E0 , 849.93E0 , 851.61E0 , 849.75E0 , 850.98E0 , 848.23E0}; // http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml void testNistHahn1(void) { const int n=7; int info; VectorXd x(n); /* * First try */ x<< 10., -1., .05, -.00001, -.05, .001, -.000001; // do the computation hahn1_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 11== lm.nfev); VERIFY( 10== lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00); // check x VERIFY_IS_APPROX(x[0], 1.0776351733E+00 ); VERIFY_IS_APPROX(x[1],-1.2269296921E-01 ); VERIFY_IS_APPROX(x[2], 4.0863750610E-03 ); VERIFY_IS_APPROX(x[3],-1.426264e-06); // shoulde be : -1.4262662514E-06 VERIFY_IS_APPROX(x[4],-5.7609940901E-03 ); VERIFY_IS_APPROX(x[5], 2.4053735503E-04 ); VERIFY_IS_APPROX(x[6],-1.2314450199E-07 ); /* * Second try */ x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001; // do the computation info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 11 == lm.nfev); VERIFY( 10 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00); // check x VERIFY_IS_APPROX(x[0], 1.077640); // should be : 1.0776351733E+00 VERIFY_IS_APPROX(x[1], -0.1226933); // should be : -1.2269296921E-01 VERIFY_IS_APPROX(x[2], 0.004086383); // should be : 4.0863750610E-03 VERIFY_IS_APPROX(x[3], -1.426277e-06); // shoulde be : -1.4262662514E-06 VERIFY_IS_APPROX(x[4],-5.7609940901E-03 ); VERIFY_IS_APPROX(x[5], 0.00024053772); // should be : 2.4053735503E-04 VERIFY_IS_APPROX(x[6], -1.231450e-07); // should be : -1.2314450199E-07 } struct misra1d_functor : Functor { static const double x[14]; static const double y[14]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==2); assert(fvec.size()==14); for(int i=0; i<14; i++) { fvec[i] = b[0]*b[1]*x[i]/(1.+b[1]*x[i]) - y[i]; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==2); assert(fjac.rows()==14); assert(fjac.cols()==2); for(int i=0; i<14; i++) { double den = 1.+b[1]*x[i]; fjac(i,0) = b[1]*x[i] / den; fjac(i,1) = b[0]*x[i]*(den-b[1]*x[i])/den/den; } return 0; } }; const double misra1d_functor::x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0}; const double misra1d_functor::y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0}; // http://www.itl.nist.gov/div898/strd/nls/data/misra1d.shtml void testNistMisra1d(void) { const int n=2; int info; VectorXd x(n); /* * First try */ x<< 500., 0.0001; // do the computation misra1d_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 3 == info); VERIFY( 9 == lm.nfev); VERIFY( 7 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02); // check x VERIFY_IS_APPROX(x[0], 4.3736970754E+02); VERIFY_IS_APPROX(x[1], 3.0227324449E-04); /* * Second try */ x<< 450., 0.0003; // do the computation info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 4 == lm.nfev); VERIFY( 3 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02); // check x VERIFY_IS_APPROX(x[0], 4.3736970754E+02); VERIFY_IS_APPROX(x[1], 3.0227324449E-04); } struct lanczos1_functor : Functor { static const double x[24]; static const double y[24]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==6); assert(fvec.size()==24); for(int i=0; i<24; i++) fvec[i] = b[0]*exp(-b[1]*x[i]) + b[2]*exp(-b[3]*x[i]) + b[4]*exp(-b[5]*x[i]) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==6); assert(fjac.rows()==24); assert(fjac.cols()==6); for(int i=0; i<24; i++) { fjac(i,0) = exp(-b[1]*x[i]); fjac(i,1) = -b[0]*x[i]*exp(-b[1]*x[i]); fjac(i,2) = exp(-b[3]*x[i]); fjac(i,3) = -b[2]*x[i]*exp(-b[3]*x[i]); fjac(i,4) = exp(-b[5]*x[i]); fjac(i,5) = -b[4]*x[i]*exp(-b[5]*x[i]); } return 0; } }; const double lanczos1_functor::x[24] = { 0.000000000000E+00, 5.000000000000E-02, 1.000000000000E-01, 1.500000000000E-01, 2.000000000000E-01, 2.500000000000E-01, 3.000000000000E-01, 3.500000000000E-01, 4.000000000000E-01, 4.500000000000E-01, 5.000000000000E-01, 5.500000000000E-01, 6.000000000000E-01, 6.500000000000E-01, 7.000000000000E-01, 7.500000000000E-01, 8.000000000000E-01, 8.500000000000E-01, 9.000000000000E-01, 9.500000000000E-01, 1.000000000000E+00, 1.050000000000E+00, 1.100000000000E+00, 1.150000000000E+00 }; const double lanczos1_functor::y[24] = { 2.513400000000E+00 ,2.044333373291E+00 ,1.668404436564E+00 ,1.366418021208E+00 ,1.123232487372E+00 ,9.268897180037E-01 ,7.679338563728E-01 ,6.388775523106E-01 ,5.337835317402E-01 ,4.479363617347E-01 ,3.775847884350E-01 ,3.197393199326E-01 ,2.720130773746E-01 ,2.324965529032E-01 ,1.996589546065E-01 ,1.722704126914E-01 ,1.493405660168E-01 ,1.300700206922E-01 ,1.138119324644E-01 ,1.000415587559E-01 ,8.833209084540E-02 ,7.833544019350E-02 ,6.976693743449E-02 ,6.239312536719E-02 }; // http://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml void testNistLanczos1(void) { const int n=6; int info; VectorXd x(n); /* * First try */ x<< 1.2, 0.3, 5.6, 5.5, 6.5, 7.6; // do the computation lanczos1_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 2 == info); VERIFY( 79 == lm.nfev); VERIFY( 72 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.429604433690E-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats // check x VERIFY_IS_APPROX(x[0], 9.5100000027E-02 ); VERIFY_IS_APPROX(x[1], 1.0000000001E+00 ); VERIFY_IS_APPROX(x[2], 8.6070000013E-01 ); VERIFY_IS_APPROX(x[3], 3.0000000002E+00 ); VERIFY_IS_APPROX(x[4], 1.5575999998E+00 ); VERIFY_IS_APPROX(x[5], 5.0000000001E+00 ); /* * Second try */ x<< 0.5, 0.7, 3.6, 4.2, 4., 6.3; // do the computation info = lm.minimize(x); // check return value VERIFY( 2 == info); VERIFY( 9 == lm.nfev); VERIFY( 8 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.43049947737308E-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats // check x VERIFY_IS_APPROX(x[0], 9.5100000027E-02 ); VERIFY_IS_APPROX(x[1], 1.0000000001E+00 ); VERIFY_IS_APPROX(x[2], 8.6070000013E-01 ); VERIFY_IS_APPROX(x[3], 3.0000000002E+00 ); VERIFY_IS_APPROX(x[4], 1.5575999998E+00 ); VERIFY_IS_APPROX(x[5], 5.0000000001E+00 ); } struct rat42_functor : Functor { static const double x[9]; static const double y[9]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==3); assert(fvec.size()==9); for(int i=0; i<9; i++) { fvec[i] = b[0] / (1.+exp(b[1]-b[2]*x[i])) - y[i]; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==3); assert(fjac.rows()==9); assert(fjac.cols()==3); for(int i=0; i<9; i++) { double e = exp(b[1]-b[2]*x[i]); fjac(i,0) = 1./(1.+e); fjac(i,1) = -b[0]*e/(1.+e)/(1.+e); fjac(i,2) = +b[0]*e*x[i]/(1.+e)/(1.+e); } return 0; } }; const double rat42_functor::x[9] = { 9.000E0, 14.000E0, 21.000E0, 28.000E0, 42.000E0, 57.000E0, 63.000E0, 70.000E0, 79.000E0 }; const double rat42_functor::y[9] = { 8.930E0 ,10.800E0 ,18.590E0 ,22.330E0 ,39.350E0 ,56.110E0 ,61.730E0 ,64.620E0 ,67.080E0 }; // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml void testNistRat42(void) { const int n=3; int info; VectorXd x(n); /* * First try */ x<< 100., 1., 0.1; // do the computation rat42_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 10 == lm.nfev); VERIFY( 8 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00); // check x VERIFY_IS_APPROX(x[0], 7.2462237576E+01); VERIFY_IS_APPROX(x[1], 2.6180768402E+00); VERIFY_IS_APPROX(x[2], 6.7359200066E-02); /* * Second try */ x<< 75., 2.5, 0.07; // do the computation info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 6 == lm.nfev); VERIFY( 5 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00); // check x VERIFY_IS_APPROX(x[0], 7.2462237576E+01); VERIFY_IS_APPROX(x[1], 2.6180768402E+00); VERIFY_IS_APPROX(x[2], 6.7359200066E-02); } struct MGH10_functor : Functor { static const double x[16]; static const double y[16]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==3); assert(fvec.size()==16); for(int i=0; i<16; i++) fvec[i] = b[0] * exp(b[1]/(x[i]+b[2])) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==3); assert(fjac.rows()==16); assert(fjac.cols()==3); for(int i=0; i<16; i++) { double factor = 1./(x[i]+b[2]); double e = exp(b[1]*factor); fjac(i,0) = e; fjac(i,1) = b[0]*factor*e; fjac(i,2) = -b[1]*b[0]*factor*factor*e; } return 0; } }; const double MGH10_functor::x[16] = { 5.000000E+01, 5.500000E+01, 6.000000E+01, 6.500000E+01, 7.000000E+01, 7.500000E+01, 8.000000E+01, 8.500000E+01, 9.000000E+01, 9.500000E+01, 1.000000E+02, 1.050000E+02, 1.100000E+02, 1.150000E+02, 1.200000E+02, 1.250000E+02 }; const double MGH10_functor::y[16] = { 3.478000E+04, 2.861000E+04, 2.365000E+04, 1.963000E+04, 1.637000E+04, 1.372000E+04, 1.154000E+04, 9.744000E+03, 8.261000E+03, 7.030000E+03, 6.005000E+03, 5.147000E+03, 4.427000E+03, 3.820000E+03, 3.307000E+03, 2.872000E+03 }; // http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml void testNistMGH10(void) { const int n=3; int info; VectorXd x(n); /* * First try */ x<< 2., 400000., 25000.; // do the computation MGH10_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 2 == info); VERIFY( 285 == lm.nfev); VERIFY( 250 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01); // check x VERIFY_IS_APPROX(x[0], 5.6096364710E-03); VERIFY_IS_APPROX(x[1], 6.1813463463E+03); VERIFY_IS_APPROX(x[2], 3.4522363462E+02); /* * Second try */ x<< 0.02, 4000., 250.; // do the computation info = lm.minimize(x); // check return value VERIFY( 2 == info); VERIFY( 126 == lm.nfev); VERIFY( 116 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01); // check x VERIFY_IS_APPROX(x[0], 5.6096364710E-03); VERIFY_IS_APPROX(x[1], 6.1813463463E+03); VERIFY_IS_APPROX(x[2], 3.4522363462E+02); } struct BoxBOD_functor : Functor { static const double x[6]; int operator()(const VectorXd &b, VectorXd &fvec) { static const double y[6] = { 109., 149., 149., 191., 213., 224. }; assert(b.size()==2); assert(fvec.size()==6); for(int i=0; i<6; i++) fvec[i] = b[0]*(1.-exp(-b[1]*x[i])) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==2); assert(fjac.rows()==6); assert(fjac.cols()==2); for(int i=0; i<6; i++) { double e = exp(-b[1]*x[i]); fjac(i,0) = 1.-e; fjac(i,1) = b[0]*x[i]*e; } return 0; } }; const double BoxBOD_functor::x[6] = { 1., 2., 3., 5., 7., 10. }; // http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml void testNistBoxBOD(void) { const int n=2; int info; VectorXd x(n); /* * First try */ x<< 1., 1.; // do the computation BoxBOD_functor functor; LevenbergMarquardt lm(functor); lm.parameters.ftol = 1.E6*epsilon(); lm.parameters.xtol = 1.E6*epsilon(); lm.parameters.factor = 10.; info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 31 == lm.nfev); VERIFY( 25 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03); // check x VERIFY_IS_APPROX(x[0], 2.1380940889E+02); VERIFY_IS_APPROX(x[1], 5.4723748542E-01); /* * Second try */ x<< 100., 0.75; // do the computation lm.resetParameters(); lm.parameters.ftol = epsilon(); lm.parameters.xtol = epsilon(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 15 == lm.nfev); VERIFY( 14 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03); // check x VERIFY_IS_APPROX(x[0], 2.1380940889E+02); VERIFY_IS_APPROX(x[1], 5.4723748542E-01); } struct MGH17_functor : Functor { static const double x[33]; static const double y[33]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==5); assert(fvec.size()==33); for(int i=0; i<33; i++) fvec[i] = b[0] + b[1]*exp(-b[3]*x[i]) + b[2]*exp(-b[4]*x[i]) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==5); assert(fjac.rows()==33); assert(fjac.cols()==5); for(int i=0; i<33; i++) { fjac(i,0) = 1.; fjac(i,1) = exp(-b[3]*x[i]); fjac(i,2) = exp(-b[4]*x[i]); fjac(i,3) = -x[i]*b[1]*exp(-b[3]*x[i]); fjac(i,4) = -x[i]*b[2]*exp(-b[4]*x[i]); } return 0; } }; const double MGH17_functor::x[33] = { 0.000000E+00, 1.000000E+01, 2.000000E+01, 3.000000E+01, 4.000000E+01, 5.000000E+01, 6.000000E+01, 7.000000E+01, 8.000000E+01, 9.000000E+01, 1.000000E+02, 1.100000E+02, 1.200000E+02, 1.300000E+02, 1.400000E+02, 1.500000E+02, 1.600000E+02, 1.700000E+02, 1.800000E+02, 1.900000E+02, 2.000000E+02, 2.100000E+02, 2.200000E+02, 2.300000E+02, 2.400000E+02, 2.500000E+02, 2.600000E+02, 2.700000E+02, 2.800000E+02, 2.900000E+02, 3.000000E+02, 3.100000E+02, 3.200000E+02 }; const double MGH17_functor::y[33] = { 8.440000E-01, 9.080000E-01, 9.320000E-01, 9.360000E-01, 9.250000E-01, 9.080000E-01, 8.810000E-01, 8.500000E-01, 8.180000E-01, 7.840000E-01, 7.510000E-01, 7.180000E-01, 6.850000E-01, 6.580000E-01, 6.280000E-01, 6.030000E-01, 5.800000E-01, 5.580000E-01, 5.380000E-01, 5.220000E-01, 5.060000E-01, 4.900000E-01, 4.780000E-01, 4.670000E-01, 4.570000E-01, 4.480000E-01, 4.380000E-01, 4.310000E-01, 4.240000E-01, 4.200000E-01, 4.140000E-01, 4.110000E-01, 4.060000E-01 }; // http://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml void testNistMGH17(void) { const int n=5; int info; VectorXd x(n); /* * First try */ x<< 50., 150., -100., 1., 2.; // do the computation MGH17_functor functor; LevenbergMarquardt lm(functor); lm.parameters.ftol = epsilon(); lm.parameters.xtol = epsilon(); lm.parameters.maxfev = 1000; info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 599 == lm.nfev); VERIFY( 544 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05); // check x VERIFY_IS_APPROX(x[0], 3.7541005211E-01); VERIFY_IS_APPROX(x[1], 1.9358469127E+00); VERIFY_IS_APPROX(x[2], -1.4646871366E+00); VERIFY_IS_APPROX(x[3], 1.2867534640E-02); VERIFY_IS_APPROX(x[4], 2.2122699662E-02); /* * Second try */ x<< 0.5 ,1.5 ,-1 ,0.01 ,0.02; // do the computation lm.resetParameters(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 18 == lm.nfev); VERIFY( 15 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05); // check x VERIFY_IS_APPROX(x[0], 3.7541005211E-01); VERIFY_IS_APPROX(x[1], 1.9358469127E+00); VERIFY_IS_APPROX(x[2], -1.4646871366E+00); VERIFY_IS_APPROX(x[3], 1.2867534640E-02); VERIFY_IS_APPROX(x[4], 2.2122699662E-02); } struct MGH09_functor : Functor { static const double _x[11]; static const double y[11]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==4); assert(fvec.size()==11); for(int i=0; i<11; i++) { double x = _x[i], xx=x*x; fvec[i] = b[0]*(xx+x*b[1])/(xx+x*b[2]+b[3]) - y[i]; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==4); assert(fjac.rows()==11); assert(fjac.cols()==4); for(int i=0; i<11; i++) { double x = _x[i], xx=x*x; double factor = 1./(xx+x*b[2]+b[3]); fjac(i,0) = (xx+x*b[1]) * factor; fjac(i,1) = b[0]*x* factor; fjac(i,2) = - b[0]*(xx+x*b[1]) * x * factor * factor; fjac(i,3) = - b[0]*(xx+x*b[1]) * factor * factor; } return 0; } }; const double MGH09_functor::_x[11] = { 4., 2., 1., 5.E-1 , 2.5E-01, 1.670000E-01, 1.250000E-01, 1.E-01, 8.330000E-02, 7.140000E-02, 6.250000E-02 }; const double MGH09_functor::y[11] = { 1.957000E-01, 1.947000E-01, 1.735000E-01, 1.600000E-01, 8.440000E-02, 6.270000E-02, 4.560000E-02, 3.420000E-02, 3.230000E-02, 2.350000E-02, 2.460000E-02 }; // http://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml void testNistMGH09(void) { const int n=4; int info; VectorXd x(n); /* * First try */ x<< 25., 39, 41.5, 39.; // do the computation MGH09_functor functor; LevenbergMarquardt lm(functor); lm.parameters.maxfev = 1000; info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 503== lm.nfev); VERIFY( 385 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04); // check x VERIFY_IS_APPROX(x[0], 0.19280624); // should be 1.9280693458E-01 VERIFY_IS_APPROX(x[1], 0.19129774); // should be 1.9128232873E-01 VERIFY_IS_APPROX(x[2], 0.12305940); // should be 1.2305650693E-01 VERIFY_IS_APPROX(x[3], 0.13606946); // should be 1.3606233068E-01 /* * Second try */ x<< 0.25, 0.39, 0.415, 0.39; // do the computation lm.resetParameters(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 18 == lm.nfev); VERIFY( 16 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04); // check x VERIFY_IS_APPROX(x[0], 0.19280781); // should be 1.9280693458E-01 VERIFY_IS_APPROX(x[1], 0.19126265); // should be 1.9128232873E-01 VERIFY_IS_APPROX(x[2], 0.12305280); // should be 1.2305650693E-01 VERIFY_IS_APPROX(x[3], 0.13605322); // should be 1.3606233068E-01 } struct Bennett5_functor : Functor { static const double x[154]; static const double y[154]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==3); assert(fvec.size()==154); for(int i=0; i<154; i++) fvec[i] = b[0]* pow(b[1]+x[i],-1./b[2]) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==3); assert(fjac.rows()==154); assert(fjac.cols()==3); for(int i=0; i<154; i++) { double e = pow(b[1]+x[i],-1./b[2]); fjac(i,0) = e; fjac(i,1) = - b[0]*e/b[2]/(b[1]+x[i]); fjac(i,2) = b[0]*e*log(b[1]+x[i])/b[2]/b[2]; } return 0; } }; const double Bennett5_functor::x[154] = { 7.447168E0, 8.102586E0, 8.452547E0, 8.711278E0, 8.916774E0, 9.087155E0, 9.232590E0, 9.359535E0, 9.472166E0, 9.573384E0, 9.665293E0, 9.749461E0, 9.827092E0, 9.899128E0, 9.966321E0, 10.029280E0, 10.088510E0, 10.144430E0, 10.197380E0, 10.247670E0, 10.295560E0, 10.341250E0, 10.384950E0, 10.426820E0, 10.467000E0, 10.505640E0, 10.542830E0, 10.578690E0, 10.613310E0, 10.646780E0, 10.679150E0, 10.710520E0, 10.740920E0, 10.770440E0, 10.799100E0, 10.826970E0, 10.854080E0, 10.880470E0, 10.906190E0, 10.931260E0, 10.955720E0, 10.979590E0, 11.002910E0, 11.025700E0, 11.047980E0, 11.069770E0, 11.091100E0, 11.111980E0, 11.132440E0, 11.152480E0, 11.172130E0, 11.191410E0, 11.210310E0, 11.228870E0, 11.247090E0, 11.264980E0, 11.282560E0, 11.299840E0, 11.316820E0, 11.333520E0, 11.349940E0, 11.366100E0, 11.382000E0, 11.397660E0, 11.413070E0, 11.428240E0, 11.443200E0, 11.457930E0, 11.472440E0, 11.486750E0, 11.500860E0, 11.514770E0, 11.528490E0, 11.542020E0, 11.555380E0, 11.568550E0, 11.581560E0, 11.594420E0, 11.607121E0, 11.619640E0, 11.632000E0, 11.644210E0, 11.656280E0, 11.668200E0, 11.679980E0, 11.691620E0, 11.703130E0, 11.714510E0, 11.725760E0, 11.736880E0, 11.747890E0, 11.758780E0, 11.769550E0, 11.780200E0, 11.790730E0, 11.801160E0, 11.811480E0, 11.821700E0, 11.831810E0, 11.841820E0, 11.851730E0, 11.861550E0, 11.871270E0, 11.880890E0, 11.890420E0, 11.899870E0, 11.909220E0, 11.918490E0, 11.927680E0, 11.936780E0, 11.945790E0, 11.954730E0, 11.963590E0, 11.972370E0, 11.981070E0, 11.989700E0, 11.998260E0, 12.006740E0, 12.015150E0, 12.023490E0, 12.031760E0, 12.039970E0, 12.048100E0, 12.056170E0, 12.064180E0, 12.072120E0, 12.080010E0, 12.087820E0, 12.095580E0, 12.103280E0, 12.110920E0, 12.118500E0, 12.126030E0, 12.133500E0, 12.140910E0, 12.148270E0, 12.155570E0, 12.162830E0, 12.170030E0, 12.177170E0, 12.184270E0, 12.191320E0, 12.198320E0, 12.205270E0, 12.212170E0, 12.219030E0, 12.225840E0, 12.232600E0, 12.239320E0, 12.245990E0, 12.252620E0, 12.259200E0, 12.265750E0, 12.272240E0 }; const double Bennett5_functor::y[154] = { -34.834702E0 ,-34.393200E0 ,-34.152901E0 ,-33.979099E0 ,-33.845901E0 ,-33.732899E0 ,-33.640301E0 ,-33.559200E0 ,-33.486801E0 ,-33.423100E0 ,-33.365101E0 ,-33.313000E0 ,-33.260899E0 ,-33.217400E0 ,-33.176899E0 ,-33.139198E0 ,-33.101601E0 ,-33.066799E0 ,-33.035000E0 ,-33.003101E0 ,-32.971298E0 ,-32.942299E0 ,-32.916302E0 ,-32.890202E0 ,-32.864101E0 ,-32.841000E0 ,-32.817799E0 ,-32.797501E0 ,-32.774300E0 ,-32.757000E0 ,-32.733799E0 ,-32.716400E0 ,-32.699100E0 ,-32.678799E0 ,-32.661400E0 ,-32.644001E0 ,-32.626701E0 ,-32.612202E0 ,-32.597698E0 ,-32.583199E0 ,-32.568699E0 ,-32.554298E0 ,-32.539799E0 ,-32.525299E0 ,-32.510799E0 ,-32.499199E0 ,-32.487598E0 ,-32.473202E0 ,-32.461601E0 ,-32.435501E0 ,-32.435501E0 ,-32.426800E0 ,-32.412300E0 ,-32.400799E0 ,-32.392101E0 ,-32.380501E0 ,-32.366001E0 ,-32.357300E0 ,-32.348598E0 ,-32.339901E0 ,-32.328400E0 ,-32.319698E0 ,-32.311001E0 ,-32.299400E0 ,-32.290699E0 ,-32.282001E0 ,-32.273300E0 ,-32.264599E0 ,-32.256001E0 ,-32.247299E0 ,-32.238602E0 ,-32.229900E0 ,-32.224098E0 ,-32.215401E0 ,-32.203800E0 ,-32.198002E0 ,-32.189400E0 ,-32.183601E0 ,-32.174900E0 ,-32.169102E0 ,-32.163300E0 ,-32.154598E0 ,-32.145901E0 ,-32.140099E0 ,-32.131401E0 ,-32.125599E0 ,-32.119801E0 ,-32.111198E0 ,-32.105400E0 ,-32.096699E0 ,-32.090900E0 ,-32.088001E0 ,-32.079300E0 ,-32.073502E0 ,-32.067699E0 ,-32.061901E0 ,-32.056099E0 ,-32.050301E0 ,-32.044498E0 ,-32.038799E0 ,-32.033001E0 ,-32.027199E0 ,-32.024300E0 ,-32.018501E0 ,-32.012699E0 ,-32.004002E0 ,-32.001099E0 ,-31.995300E0 ,-31.989500E0 ,-31.983700E0 ,-31.977900E0 ,-31.972099E0 ,-31.969299E0 ,-31.963501E0 ,-31.957701E0 ,-31.951900E0 ,-31.946100E0 ,-31.940300E0 ,-31.937401E0 ,-31.931601E0 ,-31.925800E0 ,-31.922899E0 ,-31.917101E0 ,-31.911301E0 ,-31.908400E0 ,-31.902599E0 ,-31.896900E0 ,-31.893999E0 ,-31.888201E0 ,-31.885300E0 ,-31.882401E0 ,-31.876600E0 ,-31.873699E0 ,-31.867901E0 ,-31.862101E0 ,-31.859200E0 ,-31.856300E0 ,-31.850500E0 ,-31.844700E0 ,-31.841801E0 ,-31.838900E0 ,-31.833099E0 ,-31.830200E0 ,-31.827299E0 ,-31.821600E0 ,-31.818701E0 ,-31.812901E0 ,-31.809999E0 ,-31.807100E0 ,-31.801300E0 ,-31.798401E0 ,-31.795500E0 ,-31.789700E0 ,-31.786800E0 }; // http://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml void testNistBennett5(void) { const int n=3; int info; VectorXd x(n); /* * First try */ x<< -2000., 50., 0.8; // do the computation Bennett5_functor functor; LevenbergMarquardt lm(functor); lm.parameters.maxfev = 1000; info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 758 == lm.nfev); VERIFY( 744 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04); // check x VERIFY_IS_APPROX(x[0], -2.5235058043E+03); VERIFY_IS_APPROX(x[1], 4.6736564644E+01); VERIFY_IS_APPROX(x[2], 9.3218483193E-01); /* * Second try */ x<< -1500., 45., 0.85; // do the computation lm.resetParameters(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 203 == lm.nfev); VERIFY( 192 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04); // check x VERIFY_IS_APPROX(x[0], -2523.3007865); // should be -2.5235058043E+03 VERIFY_IS_APPROX(x[1], 46.735705771); // should be 4.6736564644E+01); VERIFY_IS_APPROX(x[2], 0.93219881891); // should be 9.3218483193E-01); } struct thurber_functor : Functor { static const double _x[37]; static const double _y[37]; int operator()(const VectorXd &b, VectorXd &fvec) { // int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++; assert(b.size()==7); assert(fvec.size()==37); for(int i=0; i<37; i++) { double x=_x[i], xx=x*x, xxx=xx*x; fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i]; } return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==7); assert(fjac.rows()==37); assert(fjac.cols()==7); for(int i=0; i<37; i++) { double x=_x[i], xx=x*x, xxx=xx*x; double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx); fjac(i,0) = 1.*fact; fjac(i,1) = x*fact; fjac(i,2) = xx*fact; fjac(i,3) = xxx*fact; fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact; fjac(i,4) = x*fact; fjac(i,5) = xx*fact; fjac(i,6) = xxx*fact; } return 0; } }; const double thurber_functor::_x[37] = { -3.067E0, -2.981E0, -2.921E0, -2.912E0, -2.840E0, -2.797E0, -2.702E0, -2.699E0, -2.633E0, -2.481E0, -2.363E0, -2.322E0, -1.501E0, -1.460E0, -1.274E0, -1.212E0, -1.100E0, -1.046E0, -0.915E0, -0.714E0, -0.566E0, -0.545E0, -0.400E0, -0.309E0, -0.109E0, -0.103E0, 0.010E0, 0.119E0, 0.377E0, 0.790E0, 0.963E0, 1.006E0, 1.115E0, 1.572E0, 1.841E0, 2.047E0, 2.200E0 }; const double thurber_functor::_y[37] = { 80.574E0, 84.248E0, 87.264E0, 87.195E0, 89.076E0, 89.608E0, 89.868E0, 90.101E0, 92.405E0, 95.854E0, 100.696E0, 101.060E0, 401.672E0, 390.724E0, 567.534E0, 635.316E0, 733.054E0, 759.087E0, 894.206E0, 990.785E0, 1090.109E0, 1080.914E0, 1122.643E0, 1178.351E0, 1260.531E0, 1273.514E0, 1288.339E0, 1327.543E0, 1353.863E0, 1414.509E0, 1425.208E0, 1421.384E0, 1442.962E0, 1464.350E0, 1468.705E0, 1447.894E0, 1457.628E0}; // http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml void testNistThurber(void) { const int n=7; int info; VectorXd x(n); /* * First try */ x<< 1000 ,1000 ,400 ,40 ,0.7,0.3,0.0 ; // do the computation thurber_functor functor; LevenbergMarquardt lm(functor); lm.parameters.ftol = 1.E4*epsilon(); lm.parameters.xtol = 1.E4*epsilon(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 39 == lm.nfev); VERIFY( 36== lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03); // check x VERIFY_IS_APPROX(x[0], 1.2881396800E+03); VERIFY_IS_APPROX(x[1], 1.4910792535E+03); VERIFY_IS_APPROX(x[2], 5.8323836877E+02); VERIFY_IS_APPROX(x[3], 7.5416644291E+01); VERIFY_IS_APPROX(x[4], 9.6629502864E-01); VERIFY_IS_APPROX(x[5], 3.9797285797E-01); VERIFY_IS_APPROX(x[6], 4.9727297349E-02); /* * Second try */ x<< 1300 ,1500 ,500 ,75 ,1 ,0.4 ,0.05 ; // do the computation lm.resetParameters(); lm.parameters.ftol = 1.E4*epsilon(); lm.parameters.xtol = 1.E4*epsilon(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 29 == lm.nfev); VERIFY( 28 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03); // check x VERIFY_IS_APPROX(x[0], 1.2881396800E+03); VERIFY_IS_APPROX(x[1], 1.4910792535E+03); VERIFY_IS_APPROX(x[2], 5.8323836877E+02); VERIFY_IS_APPROX(x[3], 7.5416644291E+01); VERIFY_IS_APPROX(x[4], 9.6629502864E-01); VERIFY_IS_APPROX(x[5], 3.9797285797E-01); VERIFY_IS_APPROX(x[6], 4.9727297349E-02); } struct rat43_functor : Functor { static const double x[15]; static const double y[15]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==4); assert(fvec.size()==15); for(int i=0; i<15; i++) fvec[i] = b[0] * pow(1.+exp(b[1]-b[2]*x[i]),-1./b[3]) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==4); assert(fjac.rows()==15); assert(fjac.cols()==4); for(int i=0; i<15; i++) { double e = exp(b[1]-b[2]*x[i]); double power = -1./b[3]; fjac(i,0) = pow(1.+e, power); fjac(i,1) = power*b[0]*e*pow(1.+e, power-1.); fjac(i,2) = -power*b[0]*e*x[i]*pow(1.+e, power-1.); fjac(i,3) = b[0]*power*power*log(1.+e)*pow(1.+e, power); } return 0; } }; const double rat43_functor::x[15] = { 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. }; const double rat43_functor::y[15] = { 16.08, 33.83, 65.80, 97.20, 191.55, 326.20, 386.87, 520.53, 590.03, 651.92, 724.93, 699.56, 689.96, 637.56, 717.41 }; // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml void testNistRat43(void) { const int n=4; int info; VectorXd x(n); /* * First try */ x<< 100., 10., 1., 1.; // do the computation rat43_functor functor; LevenbergMarquardt lm(functor); lm.parameters.ftol = 1.E6*epsilon(); lm.parameters.xtol = 1.E6*epsilon(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 27 == lm.nfev); VERIFY( 20 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03); // check x VERIFY_IS_APPROX(x[0], 6.9964151270E+02); VERIFY_IS_APPROX(x[1], 5.2771253025E+00); VERIFY_IS_APPROX(x[2], 7.5962938329E-01); VERIFY_IS_APPROX(x[3], 1.2792483859E+00); /* * Second try */ x<< 700., 5., 0.75, 1.3; // do the computation lm.resetParameters(); lm.parameters.ftol = 1.E5*epsilon(); lm.parameters.xtol = 1.E5*epsilon(); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 9 == lm.nfev); VERIFY( 8 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03); // check x VERIFY_IS_APPROX(x[0], 6.9964151270E+02); VERIFY_IS_APPROX(x[1], 5.2771253025E+00); VERIFY_IS_APPROX(x[2], 7.5962938329E-01); VERIFY_IS_APPROX(x[3], 1.2792483859E+00); } struct eckerle4_functor : Functor { static const double x[35]; static const double y[35]; int operator()(const VectorXd &b, VectorXd &fvec) { assert(b.size()==3); assert(fvec.size()==35); for(int i=0; i<35; i++) fvec[i] = b[0]/b[1] * exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/(b[1]*b[1])) - y[i]; return 0; } int df(const VectorXd &b, MatrixXd &fjac) { assert(b.size()==3); assert(fjac.rows()==35); assert(fjac.cols()==3); for(int i=0; i<35; i++) { double b12 = b[1]*b[1]; double e = exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/b12); fjac(i,0) = e / b[1]; fjac(i,1) = ((x[i]-b[2])*(x[i]-b[2])/b12-1.) * b[0]*e/b12; fjac(i,2) = (x[i]-b[2])*e*b[0]/b[1]/b12; } return 0; } }; const double eckerle4_functor::x[35] = { 400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0}; const double eckerle4_functor::y[35] = { 0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710 }; // http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml void testNistEckerle4(void) { const int n=3; int info; VectorXd x(n); /* * First try */ x<< 1., 10., 500.; // do the computation eckerle4_functor functor; LevenbergMarquardt lm(functor); info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 18 == lm.nfev); VERIFY( 15 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03); // check x VERIFY_IS_APPROX(x[0], 1.5543827178); VERIFY_IS_APPROX(x[1], 4.0888321754); VERIFY_IS_APPROX(x[2], 4.5154121844E+02); /* * Second try */ x<< 1.5, 5., 450.; // do the computation info = lm.minimize(x); // check return value VERIFY( 1 == info); VERIFY( 7 == lm.nfev); VERIFY( 6 == lm.njev); // check norm^2 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03); // check x VERIFY_IS_APPROX(x[0], 1.5543827178); VERIFY_IS_APPROX(x[1], 4.0888321754); VERIFY_IS_APPROX(x[2], 4.5154121844E+02); } void test_NonLinear() { // Tests using the examples provided by (c)minpack CALL_SUBTEST(testChkder()); CALL_SUBTEST(testLmder1()); CALL_SUBTEST(testLmder()); CALL_SUBTEST(testHybrj1()); CALL_SUBTEST(testHybrj()); CALL_SUBTEST(testHybrd1()); CALL_SUBTEST(testHybrd()); CALL_SUBTEST(testLmstr1()); CALL_SUBTEST(testLmstr()); CALL_SUBTEST(testLmdif1()); CALL_SUBTEST(testLmdif()); // NIST tests, level of difficulty = "Lower" CALL_SUBTEST(testNistMisra1a()); CALL_SUBTEST(testNistChwirut2()); // NIST tests, level of difficulty = "Average" CALL_SUBTEST(testNistHahn1()); CALL_SUBTEST(testNistMisra1d()); CALL_SUBTEST(testNistMGH17()); CALL_SUBTEST(testNistLanczos1()); // NIST tests, level of difficulty = "Higher" CALL_SUBTEST(testNistRat42()); CALL_SUBTEST(testNistMGH10()); CALL_SUBTEST(testNistBoxBOD()); CALL_SUBTEST(testNistMGH09()); CALL_SUBTEST(testNistBennett5()); CALL_SUBTEST(testNistThurber()); CALL_SUBTEST(testNistRat43()); CALL_SUBTEST(testNistEckerle4()); } /* * Can be useful for debugging... printf("info, nfev, njev : %d, %d, %d\n", info, lm.nfev, lm.njev); printf("info, nfev : %d, %d\n", info, lm.nfev); printf("info, nfev, njev : %d, %d, %d\n", info, solver.nfev, solver.njev); printf("info, nfev : %d, %d\n", info, solver.nfev); printf("x[0] : %.32g\n", x[0]); printf("x[1] : %.32g\n", x[1]); printf("x[2] : %.32g\n", x[2]); printf("x[3] : %.32g\n", x[3]); printf("fvec.blueNorm() : %.32g\n", solver.fvec.blueNorm()); printf("fvec.blueNorm() : %.32g\n", lm.fvec.blueNorm()); */