// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; template void test_sycl_mem_transfers(const Eigen::SyclDevice &sycl_device) { int sizeDim1 = 100; int sizeDim2 = 10; int sizeDim3 = 20; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; Tensor in1(tensorRange); Tensor out1(tensorRange); Tensor out2(tensorRange); Tensor out3(tensorRange); in1 = in1.random(); DataType* gpu_data1 = static_cast(sycl_device.allocate(in1.size()*sizeof(DataType))); DataType* gpu_data2 = static_cast(sycl_device.allocate(out1.size()*sizeof(DataType))); TensorMap> gpu1(gpu_data1, tensorRange); TensorMap> gpu2(gpu_data2, tensorRange); sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(DataType)); sycl_device.memcpyHostToDevice(gpu_data2, in1.data(),(in1.size())*sizeof(DataType)); gpu1.device(sycl_device) = gpu1 * 3.14f; gpu2.device(sycl_device) = gpu2 * 2.7f; sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(DataType)); sycl_device.memcpyDeviceToHost(out2.data(), gpu_data1,(out2.size())*sizeof(DataType)); sycl_device.memcpyDeviceToHost(out3.data(), gpu_data2,(out3.size())*sizeof(DataType)); for (int i = 0; i < in1.size(); ++i) { VERIFY_IS_APPROX(out1(i), in1(i) * 3.14f); VERIFY_IS_APPROX(out2(i), in1(i) * 3.14f); VERIFY_IS_APPROX(out3(i), in1(i) * 2.7f); } sycl_device.deallocate(gpu_data1); sycl_device.deallocate(gpu_data2); } template void test_sycl_computations(const Eigen::SyclDevice &sycl_device) { int sizeDim1 = 100; int sizeDim2 = 10; int sizeDim3 = 20; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; Tensor in1(tensorRange); Tensor in2(tensorRange); Tensor in3(tensorRange); Tensor out(tensorRange); in2 = in2.random(); in3 = in3.random(); DataType * gpu_in1_data = static_cast(sycl_device.allocate(in1.size()*sizeof(DataType))); DataType * gpu_in2_data = static_cast(sycl_device.allocate(in2.size()*sizeof(DataType))); DataType * gpu_in3_data = static_cast(sycl_device.allocate(in3.size()*sizeof(DataType))); DataType * gpu_out_data = static_cast(sycl_device.allocate(out.size()*sizeof(DataType))); TensorMap> gpu_in1(gpu_in1_data, tensorRange); TensorMap> gpu_in2(gpu_in2_data, tensorRange); TensorMap> gpu_in3(gpu_in3_data, tensorRange); TensorMap> gpu_out(gpu_out_data, tensorRange); /// a=1.2f gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f); sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(in1(i,j,k), 1.2f); } } } printf("a=1.2f Test passed\n"); /// a=b*1.2f gpu_out.device(sycl_device) = gpu_in1 * 1.2f; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * 1.2f); } } } printf("a=b*1.2f Test Passed\n"); /// c=a*b sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType)); gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * in2(i,j,k)); } } } printf("c=a*b Test Passed\n"); /// c=a+b gpu_out.device(sycl_device) = gpu_in1 + gpu_in2; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k)); } } } printf("c=a+b Test Passed\n"); /// c=a*a gpu_out.device(sycl_device) = gpu_in1 * gpu_in1; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * in1(i,j,k)); } } } printf("c= a*a Test Passed\n"); //a*3.14f + b*2.7f gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f); sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * 3.14f + in2(i,j,k) * 2.7f); } } } printf("a*3.14f + b*2.7f Test Passed\n"); ///d= (a>0.5? b:c) sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.size())*sizeof(DataType)); gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f) ? in2(i, j, k) : in3(i, j, k)); } } } printf("d= (a>0.5? b:c) Test Passed\n"); sycl_device.deallocate(gpu_in1_data); sycl_device.deallocate(gpu_in2_data); sycl_device.deallocate(gpu_in3_data); sycl_device.deallocate(gpu_out_data); } template void sycl_computing_test_per_device(dev_Selector s){ QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); test_sycl_mem_transfers(sycl_device); test_sycl_computations(sycl_device); test_sycl_mem_transfers(sycl_device); test_sycl_computations(sycl_device); } void test_cxx11_tensor_sycl() { for (const auto& device : cl::sycl::device::get_devices()) { /// get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU ) auto s= device.template get_info(); std::transform(s.begin(), s.end(), s.begin(), ::tolower); if(!device.is_cpu() || s.find("amd")==std::string::npos) CALL_SUBTEST(sycl_computing_test_per_device(device)); } }