// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = internal::random(), s2 = internal::random(); // scalar addition VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 - m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 + m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 * m2); m3 = m1; m2 = ArrayType::Random(rows,cols); m2 = (m2==0).select(1,m2); ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 / m2); // reductions VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); if (!internal::isApprox(m1.sum(), (m1+m2).sum(), test_precision())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); } template void comparisons(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Array VectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1 < m3).all() ); VERIFY(! (m1 > m3).all() ); } // comparisons to scalar VERIFY( (m1 != (m1(r,c)+1) ).any() ); VERIFY( (m1 > (m1(r,c)-1) ).any() ); VERIFY( (m1 < (m1(r,c)+1) ).any() ); VERIFY( (m1 == m1(r,c) ).any() ); // test Select VERIFY_IS_APPROX( (m1m2).select(m1,m2), m1.cwiseMax(m2) ); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); for (int j=0; j=ArrayType::Constant(rows,cols,mid)) .select(m1,0), m3); // even shorter version: VERIFY_IS_APPROX( (m1.abs()RealScalar(0.1)).count() == rows*cols); typedef Array ArrayOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); } template void array_real(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); // these these are mostly to check possible compilation issues. VERIFY_IS_APPROX(m1.sin(), std::sin(m1)); VERIFY_IS_APPROX(m1.sin(), internal::sin(m1)); VERIFY_IS_APPROX(m1.cos(), std::cos(m1)); VERIFY_IS_APPROX(m1.cos(), internal::cos(m1)); VERIFY_IS_APPROX(m1.asin(), std::asin(m1)); VERIFY_IS_APPROX(m1.asin(), internal::asin(m1)); VERIFY_IS_APPROX(m1.acos(), std::acos(m1)); VERIFY_IS_APPROX(m1.acos(), internal::acos(m1)); VERIFY_IS_APPROX(m1.tan(), std::tan(m1)); VERIFY_IS_APPROX(m1.tan(), internal::tan(m1)); VERIFY_IS_APPROX(internal::cos(m1+RealScalar(3)*m2), internal::cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(std::cos(m1+RealScalar(3)*m2), std::cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1))); VERIFY_IS_APPROX(m1.abs().sqrt(), internal::sqrt(internal::abs(m1))); VERIFY_IS_APPROX(m1.abs(), internal::sqrt(internal::abs2(m1))); VERIFY_IS_APPROX(internal::abs2(internal::real(m1)) + internal::abs2(internal::imag(m1)), internal::abs2(m1)); VERIFY_IS_APPROX(internal::abs2(std::real(m1)) + internal::abs2(std::imag(m1)), internal::abs2(m1)); if(!NumTraits::IsComplex) VERIFY_IS_APPROX(internal::real(m1), m1); VERIFY_IS_APPROX(m1.abs().log(), std::log(std::abs(m1))); VERIFY_IS_APPROX(m1.abs().log(), internal::log(internal::abs(m1))); VERIFY_IS_APPROX(m1.exp(), std::exp(m1)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), std::exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), internal::exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(), std::exp(m1-m2)); VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(std::pow(m1,2), m1.square()); m3 = m1.abs(); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(std::pow(m3,RealScalar(0.5)), m3.sqrt()); } template void array_complex(const ArrayType& m) { typedef typename ArrayType::Index Index; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i,j) = std::sqrt(m1(i,j)); VERIFY_IS_APPROX(m1.sqrt(), m2); VERIFY_IS_APPROX(m1.sqrt(), std::sqrt(m1)); VERIFY_IS_APPROX(m1.sqrt(), internal::sqrt(m1)); } void test_array() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array(Array()) ); CALL_SUBTEST_2( array(Array22f()) ); CALL_SUBTEST_3( array(Array44d()) ); CALL_SUBTEST_4( array(ArrayXXcf(3, 3)) ); CALL_SUBTEST_5( array(ArrayXXf(8, 12)) ); CALL_SUBTEST_6( array(ArrayXXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( comparisons(Array()) ); CALL_SUBTEST_2( comparisons(Array22f()) ); CALL_SUBTEST_3( comparisons(Array44d()) ); CALL_SUBTEST_5( comparisons(ArrayXXf(8, 12)) ); CALL_SUBTEST_6( comparisons(ArrayXXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_real(Array()) ); CALL_SUBTEST_2( array_real(Array22f()) ); CALL_SUBTEST_3( array_real(Array44d()) ); CALL_SUBTEST_5( array_real(ArrayXXf(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_4( array_complex(ArrayXXcf(3, 3)) ); } VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, int >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, float >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); typedef CwiseUnaryOp, ArrayXd > Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); }