// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "sparse.h" template void sparse_product(const SparseMatrixType& ref) { const int rows = ref.rows(); const int cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = std::max(8./(rows*cols), 0.01); typedef Matrix DenseMatrix; typedef Matrix DenseVector; // test matrix-matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse(density, refMat2, m2); initSparse(density, refMat3, m3); initSparse(density, refMat4, m4); VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); // sparse * dense VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); // dense * sparse VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); } // test matrix - diagonal product if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch.... { DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); DiagonalMatrix d1(DenseVector::Random(rows)); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); initSparse(density, refM2, m2); initSparse(density, refM3, m3); VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); } // test self adjoint products { DenseMatrix b = DenseMatrix::Random(rows, rows); DenseMatrix x = DenseMatrix::Random(rows, rows); DenseMatrix refX = DenseMatrix::Random(rows, rows); DenseMatrix refUp = DenseMatrix::Zero(rows, rows); DenseMatrix refLo = DenseMatrix::Zero(rows, rows); DenseMatrix refS = DenseMatrix::Zero(rows, rows); SparseMatrixType mUp(rows, rows); SparseMatrixType mLo(rows, rows); SparseMatrixType mS(rows, rows); do { initSparse(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); } while (refUp.isZero()); refLo = refUp.transpose().conjugate(); mLo = mUp.transpose().conjugate(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; for (int k=0; k()*b, refX=refS*b); VERIFY_IS_APPROX(x=mLo.template marked()*b, refX=refS*b); VERIFY_IS_APPROX(x=mS.template marked()*b, refX=refS*b); } } void test_eigen2_sparse_product() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( sparse_product(SparseMatrix(8, 8)) ); CALL_SUBTEST( sparse_product(SparseMatrix >(16, 16)) ); CALL_SUBTEST( sparse_product(SparseMatrix(33, 33)) ); CALL_SUBTEST( sparse_product(DynamicSparseMatrix(8, 8)) ); } }