// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void map_class(const VectorType& m) { typedef typename VectorType::Scalar Scalar; int size = m.size(); // test Map.h Scalar* array1 = ei_aligned_malloc(size); Scalar* array2 = ei_aligned_malloc(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3; Map(array1, size) = VectorType::Random(size); Map(array2, size) = Map(array1, size); Map(array3unaligned, size) = Map(array1, size); VectorType ma1 = Map(array1, size); VectorType ma2 = Map(array2, size); VectorType ma3 = Map(array3unaligned, size); VERIFY_IS_APPROX(ma1, ma2); VERIFY_IS_APPROX(ma1, ma3); ei_aligned_free(array1, size); ei_aligned_free(array2, size); delete[] array3; } template void map_static_methods(const VectorType& m) { typedef typename VectorType::Scalar Scalar; int size = m.size(); // test Map.h Scalar* array1 = ei_aligned_malloc(size); Scalar* array2 = ei_aligned_malloc(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3; VectorType::MapAligned(array1, size) = VectorType::Random(size); VectorType::Map(array2, size) = VectorType::Map(array1, size); VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); VectorType ma1 = VectorType::Map(array1, size); VectorType ma2 = VectorType::MapAligned(array2, size); VectorType ma3 = VectorType::Map(array3unaligned, size); VERIFY_IS_APPROX(ma1, ma2); VERIFY_IS_APPROX(ma1, ma3); ei_aligned_free(array1, size); ei_aligned_free(array2, size); delete[] array3; } void test_map() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( map_class(Matrix()) ); CALL_SUBTEST( map_class(Vector4d()) ); CALL_SUBTEST( map_class(RowVector4f()) ); CALL_SUBTEST( map_class(VectorXcf(8)) ); CALL_SUBTEST( map_class(VectorXi(12)) ); CALL_SUBTEST( map_static_methods(Matrix()) ); CALL_SUBTEST( map_static_methods(Vector3f()) ); CALL_SUBTEST( map_static_methods(RowVector3d()) ); CALL_SUBTEST( map_static_methods(VectorXcd(8)) ); CALL_SUBTEST( map_static_methods(VectorXf(12)) ); } }