// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012, 2013 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "matrix_functions.h" template void test2dRotation(const T& tol) { Matrix A, B, C; T angle, c, s; A << 0, 1, -1, 0; MatrixPower > Apow(A); for (int i=0; i<=20; ++i) { angle = std::pow(T(10), (i-10) / T(5.)); c = std::cos(angle); s = std::sin(angle); B << c, s, -s, c; C = Apow(std::ldexp(angle,1) / T(EIGEN_PI)); std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; VERIFY(C.isApprox(B, tol)); } } template void test2dHyperbolicRotation(const T& tol) { Matrix,2,2> A, B, C; T angle, ch = std::cosh((T)1); std::complex ish(0, std::sinh((T)1)); A << ch, ish, -ish, ch; MatrixPower,2,2> > Apow(A); for (int i=0; i<=20; ++i) { angle = std::ldexp(static_cast(i-10), -1); ch = std::cosh(angle); ish = std::complex(0, std::sinh(angle)); B << ch, ish, -ish, ch; C = Apow(angle); std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; VERIFY(C.isApprox(B, tol)); } } template void test3dRotation(const T& tol) { Matrix v; T angle; for (int i=0; i<=20; ++i) { v = Matrix::Random(); v.normalize(); angle = std::pow(T(10), (i-10) / T(5.)); VERIFY(AngleAxis(angle, v).matrix().isApprox(AngleAxis(1,v).matrix().pow(angle), tol)); } } template void testGeneral(const MatrixType& m, const typename MatrixType::RealScalar& tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1, m2, m3, m4, m5; RealScalar x, y; for (int i=0; i < g_repeat; ++i) { generateTestMatrix::run(m1, m.rows()); MatrixPower mpow(m1); x = internal::random(); y = internal::random(); m2 = mpow(x); m3 = mpow(y); m4 = mpow(x+y); m5.noalias() = m2 * m3; VERIFY(m4.isApprox(m5, tol)); m4 = mpow(x*y); m5 = m2.pow(y); VERIFY(m4.isApprox(m5, tol)); m4 = (std::abs(x) * m1).pow(y); m5 = std::pow(std::abs(x), y) * m3; VERIFY(m4.isApprox(m5, tol)); } } template void testSingular(const MatrixType& m_const, const typename MatrixType::RealScalar& tol) { // we need to pass by reference in order to prevent errors with // MSVC for aligned data types ... MatrixType& m = const_cast(m_const); const int IsComplex = NumTraits::Scalar>::IsComplex; typedef typename internal::conditional, const MatrixType&>::type TriangularType; typename internal::conditional< IsComplex, ComplexSchur, RealSchur >::type schur; MatrixType T; for (int i=0; i < g_repeat; ++i) { m.setRandom(); m.col(0).fill(0); schur.compute(m); T = schur.matrixT(); const MatrixType& U = schur.matrixU(); processTriangularMatrix::run(m, T, U); MatrixPower mpow(m); T = T.sqrt(); VERIFY(mpow(0.5L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); T = T.sqrt(); VERIFY(mpow(0.25L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); T = T.sqrt(); VERIFY(mpow(0.125L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); } } template void testLogThenExp(const MatrixType& m_const, const typename MatrixType::RealScalar& tol) { // we need to pass by reference in order to prevent errors with // MSVC for aligned data types ... MatrixType& m = const_cast(m_const); typedef typename MatrixType::Scalar Scalar; Scalar x; for (int i=0; i < g_repeat; ++i) { generateTestMatrix::run(m, m.rows()); x = internal::random(); VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol)); } } typedef Matrix Matrix3dRowMajor; typedef Matrix Matrix3e; typedef Matrix MatrixXe; EIGEN_DECLARE_TEST(matrix_power) { CALL_SUBTEST_2(test2dRotation(1e-13)); CALL_SUBTEST_1(test2dRotation(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64 CALL_SUBTEST_9(test2dRotation(1e-13L)); CALL_SUBTEST_2(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_1(test2dHyperbolicRotation(1e-5)); CALL_SUBTEST_9(test2dHyperbolicRotation(1e-14L)); CALL_SUBTEST_10(test3dRotation(1e-13)); CALL_SUBTEST_11(test3dRotation(1e-5)); CALL_SUBTEST_12(test3dRotation(1e-13L)); CALL_SUBTEST_2(testGeneral(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13)); CALL_SUBTEST_3(testGeneral(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testGeneral(MatrixXd(8,8), 2e-12)); CALL_SUBTEST_1(testGeneral(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testGeneral(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testGeneral(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testGeneral(MatrixXf(2,2), 1e-3)); // see bug 614 CALL_SUBTEST_9(testGeneral(MatrixXe(7,7), 1e-13L)); CALL_SUBTEST_10(testGeneral(Matrix3d(), 1e-13)); CALL_SUBTEST_11(testGeneral(Matrix3f(), 1e-4)); CALL_SUBTEST_12(testGeneral(Matrix3e(), 1e-13L)); CALL_SUBTEST_2(testSingular(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13)); CALL_SUBTEST_3(testSingular(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testSingular(MatrixXd(8,8), 2e-12)); CALL_SUBTEST_1(testSingular(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testSingular(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testSingular(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testSingular(MatrixXf(2,2), 1e-3)); CALL_SUBTEST_9(testSingular(MatrixXe(7,7), 1e-13L)); CALL_SUBTEST_10(testSingular(Matrix3d(), 1e-13)); CALL_SUBTEST_11(testSingular(Matrix3f(), 1e-4)); CALL_SUBTEST_12(testSingular(Matrix3e(), 1e-13L)); CALL_SUBTEST_2(testLogThenExp(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13)); CALL_SUBTEST_3(testLogThenExp(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testLogThenExp(MatrixXd(8,8), 2e-12)); CALL_SUBTEST_1(testLogThenExp(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testLogThenExp(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testLogThenExp(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testLogThenExp(MatrixXf(2,2), 1e-3)); CALL_SUBTEST_9(testLogThenExp(MatrixXe(7,7), 1e-13L)); CALL_SUBTEST_10(testLogThenExp(Matrix3d(), 1e-13)); CALL_SUBTEST_11(testLogThenExp(Matrix3f(), 1e-4)); CALL_SUBTEST_12(testLogThenExp(Matrix3e(), 1e-13L)); }