// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void qr(const MatrixType& m) { int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef Matrix MatrixQType; typedef Matrix VectorType; MatrixType a = MatrixType::Random(rows,cols); HouseholderQR qrOfA(a); MatrixQType q = qrOfA.householderQ(); VERIFY_IS_UNITARY(q); MatrixType r = qrOfA.matrixQR().template triangularView(); VERIFY_IS_APPROX(a, qrOfA.householderQ() * r); } template void qr_fixedsize() { enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; Matrix m1 = Matrix::Random(); HouseholderQR > qr(m1); Matrix r = qr.matrixQR(); // FIXME need better way to construct trapezoid for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0); VERIFY_IS_APPROX(m1, qr.householderQ() * r); Matrix m2 = Matrix::Random(Cols,Cols2); Matrix m3 = m1*m2; m2 = Matrix::Random(Cols,Cols2); m2 = qr.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); } template void qr_invertible() { typedef typename NumTraits::Real RealScalar; typedef typename MatrixType::Scalar Scalar; int size = ei_random(10,50); MatrixType m1(size, size), m2(size, size), m3(size, size); m1 = MatrixType::Random(size,size); if (ei_is_same_type::ret) { // let's build a matrix more stable to inverse MatrixType a = MatrixType::Random(size,size*2); m1 += a * a.adjoint(); } HouseholderQR qr(m1); m3 = MatrixType::Random(size,size); m2 = qr.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); // now construct a matrix with prescribed determinant m1.setZero(); for(int i = 0; i < size; i++) m1(i,i) = ei_random(); RealScalar absdet = ei_abs(m1.diagonal().prod()); m3 = qr.householderQ(); // get a unitary m1 = m3 * m1 * m3; qr.compute(m1); VERIFY_IS_APPROX(absdet, qr.absDeterminant()); VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant()); } template void qr_verify_assert() { MatrixType tmp; HouseholderQR qr; VERIFY_RAISES_ASSERT(qr.matrixQR()) VERIFY_RAISES_ASSERT(qr.solve(tmp)) VERIFY_RAISES_ASSERT(qr.householderQ()) VERIFY_RAISES_ASSERT(qr.absDeterminant()) VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) } void test_qr() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( qr(MatrixXf(ei_random(1,200),ei_random(1,200))) ); CALL_SUBTEST_2( qr(MatrixXcd(ei_random(1,200),ei_random(1,200))) ); CALL_SUBTEST_3(( qr_fixedsize, 2 >() )); CALL_SUBTEST_4(( qr_fixedsize, 4 >() )); CALL_SUBTEST_5(( qr_fixedsize, 7 >() )); CALL_SUBTEST_11( qr(Matrix()) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( qr_invertible() ); CALL_SUBTEST_6( qr_invertible() ); CALL_SUBTEST_7( qr_invertible() ); CALL_SUBTEST_8( qr_invertible() ); } CALL_SUBTEST_9(qr_verify_assert()); CALL_SUBTEST_10(qr_verify_assert()); CALL_SUBTEST_1(qr_verify_assert()); CALL_SUBTEST_6(qr_verify_assert()); CALL_SUBTEST_7(qr_verify_assert()); CALL_SUBTEST_8(qr_verify_assert()); // Test problem size constructors CALL_SUBTEST_12(HouseholderQR(10, 20)); }