// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2007 Benoit Jacob // // Eigen is free software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the Free Software // Foundation; either version 2 or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more // details. // // You should have received a copy of the GNU General Public License along // with Eigen; if not, write to the Free Software Foundation, Inc., 51 // Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. // // As a special exception, if other files instantiate templates or use macros // or functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. This exception does not invalidate any other reasons why a work // based on this file might be covered by the GNU General Public License. #include "main.h" namespace Eigen { template void basicStuff(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols), mzero = MatrixType::zero(rows, cols), identity = Matrix ::identity(rows), square = Matrix ::random(rows, rows); VectorType v1 = VectorType::random(rows), v2 = VectorType::random(rows), vzero = VectorType::zero(rows); int r = random(0, rows-1), c = random(0, cols-1); VERIFY_IS_APPROX( v1, v1); VERIFY_IS_NOT_APPROX( v1, 2*v1); VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); if(NumTraits::HasFloatingPoint) VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); VERIFY_IS_APPROX( vzero, v1-v1); VERIFY_IS_APPROX( m1, m1); VERIFY_IS_NOT_APPROX( m1, 2*m1); VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); VERIFY_IS_APPROX( mzero, m1-m1); // always test operator() on each read-only expression class, // in order to check const-qualifiers. // indeed, if an expression class (here Zero) is meant to be read-only, // hence has no _write() method, the corresponding MatrixBase method (here zero()) // should return a const-qualified object so that it is the const-qualified // operator() that gets called, which in turn calls _read(). VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::zero(rows,cols)(r,c), static_cast(1)); // now test copying a row-vector into a (column-)vector and conversely. square.col(r) = square.row(r).eval(); Matrix rv(rows); Matrix cv(rows); rv = square.col(r); cv = square.row(r); VERIFY_IS_APPROX(rv, cv.transpose()); } void EigenTest::testBasicStuff() { for(int i = 0; i < m_repeat; i++) { basicStuff(Matrix()); basicStuff(Matrix4d()); basicStuff(MatrixXcf(3, 3)); basicStuff(MatrixXi(8, 12)); basicStuff(MatrixXcd(20, 20)); } } } // namespace Eigen