// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Benoit Jacob // Copyright (C) 2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define TEST_ENABLE_TEMPORARY_TRACKING #define EIGEN_NO_STATIC_ASSERT #include "main.h" template void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); // test multiplication m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); // test quotient m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); m2 = m1; // yes, there might be an aliasing issue there but ".rowwise() /=" // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid // evaluating the reduction multiple times if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic) { m2.rowwise() /= m2.colwise().sum(); VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); } // all/any Array mb(rows,cols); mb = (m1.real()<=0.7).colwise().all(); VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() ); mb = (m1.real()<=0.7).rowwise().all(); VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() ); mb = (m1.real()>=0.7).colwise().any(); VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() ); mb = (m1.real()>=0.7).rowwise().any(); VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() ); } template void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix ColVectorType; typedef Matrix RowVectorType; typedef Matrix RealColVectorType; typedef Matrix RealRowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); RealColVectorType rcres; RealRowVectorType rrres; // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); // test norm rrres = m1.colwise().norm(); VERIFY_IS_APPROX(rrres(c), m1.col(c).norm()); rcres = m1.rowwise().norm(); VERIFY_IS_APPROX(rcres(r), m1.row(r).norm()); VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm()); VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm()); // test normalized m2 = m1.colwise().normalized(); VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); m2 = m1.rowwise().normalized(); VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); // test normalize m2 = m1; m2.colwise().normalize(); VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); m2 = m1; m2.rowwise().normalize(); VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); // test with partial reduction of products Matrix m1m1 = m1 * m1.transpose(); VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); Matrix tmp(rows); VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), (MatrixType::RowsAtCompileTime==Dynamic ? 1 : 0)); } void test_vectorwiseop() { CALL_SUBTEST_1( vectorwiseop_array(Array22cd()) ); CALL_SUBTEST_2( vectorwiseop_array(Array()) ); CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) ); CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) ); CALL_SUBTEST_5( vectorwiseop_matrix(Matrix()) ); CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); }