// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see .
#include "main.h"
#include
using namespace std;
float norm(float x) {return x*x;}
double norm(double x) {return x*x;}
long double norm(long double x) {return x*x;}
template < typename T>
complex promote(complex x) { return complex(x.real(),x.imag()); }
complex promote(float x) { return complex( x); }
complex promote(double x) { return complex( x); }
complex promote(long double x) { return complex( x); }
template
long double fft_rmse( const VectorType1 & fftbuf,const VectorType2 & timebuf)
{
long double totalpower=0;
long double difpower=0;
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
for (size_t k0=0;k0 acc = 0;
long double phinc = -2.*k0* M_PIl / timebuf.size();
for (size_t k1=0;k1(0,k1*phinc) );
}
totalpower += norm(acc);
complex x = promote(fftbuf[k0]);
complex dif = acc - x;
difpower += norm(dif);
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
}
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower);
}
template
long double dif_rmse( const VectorType1& buf1,const VectorType2& buf2)
{
long double totalpower=0;
long double difpower=0;
size_t n = min( buf1.size(),buf2.size() );
for (size_t k=0;k struct VectorType;
template struct VectorType
{
typedef vector type;
};
template struct VectorType
{
typedef Matrix type;
};
template
void test_scalar_generic(int nfft)
{
typedef typename FFT::Complex Complex;
typedef typename FFT::Scalar Scalar;
typedef typename VectorType::type ScalarVector;
typedef typename VectorType::type ComplexVector;
FFT fft;
ScalarVector inbuf(nfft);
ComplexVector outbuf;
for (int k=0;k>1)+1);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision() );// gross check
fft.ClearFlag(fft.HalfSpectrum );
fft.fwd( outbuf,inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision() );// gross check
ScalarVector buf3;
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv( buf4 , outbuf);
for (int k=0;k() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check
}
template
void test_scalar(int nfft)
{
test_scalar_generic(nfft);
test_scalar_generic(nfft);
}
template
void test_complex_generic(int nfft)
{
typedef typename FFT::Complex Complex;
typedef typename VectorType::type ComplexVector;
FFT fft;
ComplexVector inbuf(nfft);
ComplexVector outbuf;
ComplexVector buf3;
for (int k=0;k() );// gross check
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv( buf4 , outbuf);
for (int k=0;k() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check
}
template
void test_complex(int nfft)
{
test_complex_generic(nfft);
test_complex_generic(nfft);
}
void test_FFT()
{
CALL_SUBTEST( test_complex(32) );
CALL_SUBTEST( test_complex(32) );
CALL_SUBTEST( test_complex(32) );
CALL_SUBTEST( test_complex(256) );
CALL_SUBTEST( test_complex(256) );
CALL_SUBTEST( test_complex(256) );
CALL_SUBTEST( test_complex(3*8) );
CALL_SUBTEST( test_complex(3*8) );
CALL_SUBTEST( test_complex(3*8) );
CALL_SUBTEST( test_complex(5*32) );
CALL_SUBTEST( test_complex(5*32) );
CALL_SUBTEST( test_complex(5*32) );
CALL_SUBTEST( test_complex(2*3*4) );
CALL_SUBTEST( test_complex(2*3*4) );
CALL_SUBTEST( test_complex(2*3*4) );
CALL_SUBTEST( test_complex(2*3*4*5) );
CALL_SUBTEST( test_complex(2*3*4*5) );
CALL_SUBTEST( test_complex(2*3*4*5) );
CALL_SUBTEST( test_complex(2*3*4*5*7) );
CALL_SUBTEST( test_complex(2*3*4*5*7) );
CALL_SUBTEST( test_complex(2*3*4*5*7) );
CALL_SUBTEST( test_scalar(32) );
CALL_SUBTEST( test_scalar(32) );
CALL_SUBTEST( test_scalar(32) );
CALL_SUBTEST( test_scalar(45) );
CALL_SUBTEST( test_scalar(45) );
CALL_SUBTEST( test_scalar(45) );
CALL_SUBTEST( test_scalar(50) );
CALL_SUBTEST( test_scalar(50) );
CALL_SUBTEST( test_scalar(50) );
CALL_SUBTEST( test_scalar(256) );
CALL_SUBTEST( test_scalar(256) );
CALL_SUBTEST( test_scalar(256) );
CALL_SUBTEST( test_scalar(2*3*4*5*7) );
CALL_SUBTEST( test_scalar(2*3*4*5*7) );
CALL_SUBTEST( test_scalar(2*3*4*5*7) );
}