// This file is triangularView of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void triangular(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; RealScalar largerEps = 10*test_precision(); int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), r1(rows, cols), r2(rows, cols), mzero = MatrixType::Zero(rows, cols), mones = MatrixType::Ones(rows, cols), identity = Matrix ::Identity(rows, rows), square = Matrix ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); MatrixType m1up = m1.template triangularView(); MatrixType m2up = m2.template triangularView(); if (rows*cols>1) { VERIFY(m1up.isUpperTriangular()); VERIFY(m2up.transpose().isLowerTriangular()); VERIFY(!m2.isLowerTriangular()); } // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); // test overloaded operator+= r1.setZero(); r2.setZero(); r1.template triangularView() += m1; r2 += m1up; VERIFY_IS_APPROX(r1,r2); // test overloaded operator= m1.setZero(); m1.template triangularView() = (m2.transpose() * m2).lazy(); m3 = m2.transpose() * m2; VERIFY_IS_APPROX(m3.template triangularView().transpose().toDense(), m1); // test overloaded operator= m1.setZero(); m1.template triangularView() = (m2.transpose() * m2).lazy(); VERIFY_IS_APPROX(m3.template triangularView().toDense(), m1); m1 = MatrixType::Random(rows, cols); for (int i=0; i(); Transpose trm4(m4); // test back and forward subsitution with a vector as the rhs m3 = m1.template triangularView(); VERIFY(v2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView().solve(v2)), largerEps)); m3 = m1.template triangularView(); VERIFY(v2.isApprox(m3.transpose() * (m1.transpose().template triangularView().solve(v2)), largerEps)); m3 = m1.template triangularView(); VERIFY(v2.isApprox(m3 * (m1.template triangularView().solve(v2)), largerEps)); m3 = m1.template triangularView(); VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView().solve(v2)), largerEps)); // test back and forward subsitution with a matrix as the rhs m3 = m1.template triangularView(); VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView().solve(m2)), largerEps)); m3 = m1.template triangularView(); VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView().solve(m2)), largerEps)); m3 = m1.template triangularView(); VERIFY(m2.isApprox(m3 * (m1.template triangularView().solve(m2)), largerEps)); m3 = m1.template triangularView(); VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView().solve(m2)), largerEps)); // check M * inv(L) using in place API m4 = m3; m3.transpose().template triangularView().solveInPlace(trm4); VERIFY(m4.cwise().abs().isIdentity(test_precision())); // check M * inv(U) using in place API m3 = m1.template triangularView(); m4 = m3; m3.transpose().template triangularView().solveInPlace(trm4); VERIFY(m4.cwise().abs().isIdentity(test_precision())); // check solve with unit diagonal m3 = m1.template triangularView(); VERIFY(m2.isApprox(m3 * (m1.template triangularView().solve(m2)), largerEps)); // VERIFY(( m1.template triangularView() // * m2.template triangularView()).isUpperTriangular()); // test swap m1.setOnes(); m2.setZero(); m2.template triangularView().swap(m1); m3.setZero(); m3.template triangularView().setOnes(); VERIFY_IS_APPROX(m2,m3); } void test_triangular() { for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST( triangular(Matrix()) ); CALL_SUBTEST( triangular(Matrix()) ); CALL_SUBTEST( triangular(Matrix3d()) ); CALL_SUBTEST( triangular(MatrixXcf(4, 4)) ); CALL_SUBTEST( triangular(Matrix,8, 8>()) ); CALL_SUBTEST( triangular(MatrixXd(17,17)) ); CALL_SUBTEST( triangular(Matrix(5, 5)) ); } }