// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #define EIGEN_NO_STATIC_ASSERT #include "main.h" template<typename MatrixType> void basicStuff(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Identity(rows, rows), square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); Scalar x = internal::random<Scalar>(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); m1.coeffRef(r,c) = x; VERIFY_IS_APPROX(x, m1.coeff(r,c)); m1(r,c) = x; VERIFY_IS_APPROX(x, m1(r,c)); v1.coeffRef(r) = x; VERIFY_IS_APPROX(x, v1.coeff(r)); v1(r) = x; VERIFY_IS_APPROX(x, v1(r)); v1[r] = x; VERIFY_IS_APPROX(x, v1[r]); VERIFY_IS_APPROX( v1, v1); VERIFY_IS_NOT_APPROX( v1, 2*v1); VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); if(!NumTraits<Scalar>::IsInteger) VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); VERIFY_IS_APPROX( vzero, v1-v1); VERIFY_IS_APPROX( m1, m1); VERIFY_IS_NOT_APPROX( m1, 2*m1); VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); VERIFY_IS_APPROX( mzero, m1-m1); // always test operator() on each read-only expression class, // in order to check const-qualifiers. // indeed, if an expression class (here Zero) is meant to be read-only, // hence has no _write() method, the corresponding MatrixBase method (here zero()) // should return a const-qualified object so that it is the const-qualified // operator() that gets called, which in turn calls _read(). VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); // now test copying a row-vector into a (column-)vector and conversely. square.col(r) = square.row(r).eval(); Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); rv = square.row(r); cv = square.col(r); VERIFY_IS_APPROX(rv, cv.transpose()); if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) { VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); } if(cols!=1 && rows!=1) { VERIFY_RAISES_ASSERT(m1[0]); VERIFY_RAISES_ASSERT((m1+m1)[0]); } VERIFY_IS_APPROX(m3 = m1,m1); MatrixType m4; VERIFY_IS_APPROX(m4 = m1,m1); m3.real() = m1.real(); VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); // check == / != operators VERIFY(m1==m1); VERIFY(m1!=m2); VERIFY(!(m1==m2)); VERIFY(!(m1!=m1)); m1 = m2; VERIFY(m1==m2); VERIFY(!(m1!=m2)); // check automatic transposition sm2.setZero(); for(typename MatrixType::Index i=0;i<rows;++i) sm2.col(i) = sm1.row(i); VERIFY_IS_APPROX(sm2,sm1.transpose()); sm2.setZero(); for(typename MatrixType::Index i=0;i<rows;++i) sm2.col(i).noalias() = sm1.row(i); VERIFY_IS_APPROX(sm2,sm1.transpose()); sm2.setZero(); for(typename MatrixType::Index i=0;i<rows;++i) sm2.col(i).noalias() += sm1.row(i); VERIFY_IS_APPROX(sm2,sm1.transpose()); sm2.setZero(); for(typename MatrixType::Index i=0;i<rows;++i) sm2.col(i).noalias() -= sm1.row(i); VERIFY_IS_APPROX(sm2,-sm1.transpose()); } template<typename MatrixType> void basicStuffComplex(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; Index rows = m.rows(); Index cols = m.cols(); Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); VERIFY(internal::real(s1)==internal::real_ref(s1)); VERIFY(internal::imag(s1)==internal::imag_ref(s1)); internal::real_ref(s1) = internal::real(s2); internal::imag_ref(s1) = internal::imag(s2); VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. RealMatrixType rm1 = RealMatrixType::Random(rows,cols), rm2 = RealMatrixType::Random(rows,cols); MatrixType cm(rows,cols); cm.real() = rm1; cm.imag() = rm2; VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); rm1.setZero(); rm2.setZero(); rm1 = cm.real(); rm2 = cm.imag(); VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); cm.real().setZero(); VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); } #ifdef EIGEN_TEST_PART_2 void casting() { Matrix4f m = Matrix4f::Random(), m2; Matrix4d n = m.cast<double>(); VERIFY(m.isApprox(n.cast<float>())); m2 = m.cast<float>(); // check the specialization when NewType == Type VERIFY(m.isApprox(m2)); } #endif template <typename Scalar> void fixedSizeMatrixConstruction() { const Scalar raw[3] = {1,2,3}; Matrix<Scalar,3,1> m(raw); Array<Scalar,3,1> a(raw); VERIFY(m(0) == 1); VERIFY(m(1) == 2); VERIFY(m(2) == 3); VERIFY(a(0) == 1); VERIFY(a(1) == 2); VERIFY(a(2) == 3); } void test_basicstuff() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( basicStuff(Matrix4d()) ); CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,100), internal::random<int>(1,100))) ); CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,100), internal::random<int>(1,100))) ); CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,100), internal::random<int>(1,100))) ); CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,100),internal::random<int>(1,100))) ); CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,100), internal::random<int>(1,100))) ); CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,100), internal::random<int>(1,100))) ); } CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); CALL_SUBTEST_2(casting()); }