// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015-2016 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // workaround issue between gcc >= 4.7 and cuda 5.5 #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) #undef _GLIBCXX_ATOMIC_BUILTINS #undef _GLIBCXX_USE_INT128 #endif #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cuda_basic #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #include #include #include "main.h" #include "cuda_common.h" // Check that dense modules can be properly parsed by nvcc #include // struct Foo{ // EIGEN_DEVICE_FUNC // void operator()(int i, const float* mats, float* vecs) const { // using namespace Eigen; // // Matrix3f M(data); // // Vector3f x(data+9); // // Map(data+9) = M.inverse() * x; // Matrix3f M(mats+i/16); // Vector3f x(vecs+i*3); // // using std::min; // // using std::sqrt; // Map(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x(); // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); // } // }; template struct coeff_wise { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; T x1(in+i); T x2(in+i+1); T x3(in+i+2); Map res(out+i*T::MaxSizeAtCompileTime); res.array() += (in[0] * x1 + x2).array() * x3.array(); } }; template struct replicate { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; T x1(in+i); int step = x1.size() * 4; int stride = 3 * step; typedef Map > MapType; MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); } }; template struct redux { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; int N = 10; T x1(in+i); out[i*N+0] = x1.minCoeff(); out[i*N+1] = x1.maxCoeff(); out[i*N+2] = x1.sum(); out[i*N+3] = x1.prod(); out[i*N+4] = x1.matrix().squaredNorm(); out[i*N+5] = x1.matrix().norm(); out[i*N+6] = x1.colwise().sum().maxCoeff(); out[i*N+7] = x1.rowwise().maxCoeff().sum(); out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); } }; template struct prod_test { EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const { using namespace Eigen; typedef Matrix T3; T1 x1(in+i); T2 x2(in+i+1); Map res(out+i*T3::MaxSizeAtCompileTime); res += in[i] * x1 * x2; } }; template struct diagonal { EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const { using namespace Eigen; T1 x1(in+i); Map res(out+i*T2::MaxSizeAtCompileTime); res += x1.diagonal(); } }; template struct eigenvalues_direct { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; typedef Matrix Vec; T M(in+i); Map res(out+i*Vec::MaxSizeAtCompileTime); T A = M*M.adjoint(); SelfAdjointEigenSolver eig; eig.computeDirect(M); res = eig.eigenvalues(); } }; template struct eigenvalues { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; typedef Matrix Vec; T M(in+i); Map res(out+i*Vec::MaxSizeAtCompileTime); T A = M*M.adjoint(); SelfAdjointEigenSolver eig; eig.compute(M); res = eig.eigenvalues(); } }; template struct matrix_inverse { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; T M(in+i); Map res(out+i*T::MaxSizeAtCompileTime); res = M.inverse(); } }; void test_cuda_basic() { ei_test_init_cuda(); int nthreads = 100; Eigen::VectorXf in, out; #ifndef __CUDA_ARCH__ int data_size = nthreads * 512; in.setRandom(data_size); out.setRandom(data_size); #endif CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(replicate(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(replicate(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(redux(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(redux(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(prod_test(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(prod_test(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(diagonal(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(diagonal(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(matrix_inverse(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(matrix_inverse(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(matrix_inverse(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues_direct(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues_direct(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues(), nthreads, in, out) ); }