// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include "main.h" template< class Iterator > std::reverse_iterator make_reverse_iterator( Iterator i ) { return std::reverse_iterator(i); } template bool is_PointerBasedStlIterator(const PointerBasedStlIterator &) { return true; } template bool is_DenseStlIterator(const DenseStlIterator &) { return true; } template void test_range_for_loop(int rows=Rows, int cols=Cols) { using std::begin; using std::end; typedef Matrix VectorType; typedef Matrix RowVectorType; typedef Matrix ColMatrixType; typedef Matrix RowMatrixType; VectorType v = VectorType::Random(rows); const VectorType& cv(v); ColMatrixType A = ColMatrixType::Random(rows,cols); const ColMatrixType& cA(A); RowMatrixType B = RowMatrixType::Random(rows,cols); Index i, j; VERIFY( is_PointerBasedStlIterator(v.begin()) ); VERIFY( is_PointerBasedStlIterator(v.end()) ); VERIFY( is_PointerBasedStlIterator(cv.begin()) ); VERIFY( is_PointerBasedStlIterator(cv.end()) ); j = internal::random(0,A.cols()-1); VERIFY( is_PointerBasedStlIterator(A.col(j).begin()) ); VERIFY( is_PointerBasedStlIterator(A.col(j).end()) ); VERIFY( is_PointerBasedStlIterator(cA.col(j).begin()) ); VERIFY( is_PointerBasedStlIterator(cA.col(j).end()) ); i = internal::random(0,A.rows()-1); VERIFY( is_PointerBasedStlIterator(A.row(i).begin()) ); VERIFY( is_PointerBasedStlIterator(A.row(i).end()) ); VERIFY( is_PointerBasedStlIterator(cA.row(i).begin()) ); VERIFY( is_PointerBasedStlIterator(cA.row(i).end()) ); VERIFY( is_PointerBasedStlIterator(A.reshaped().begin()) ); VERIFY( is_PointerBasedStlIterator(A.reshaped().end()) ); VERIFY( is_PointerBasedStlIterator(cA.reshaped().begin()) ); VERIFY( is_PointerBasedStlIterator(cA.reshaped().end()) ); VERIFY( is_PointerBasedStlIterator(B.template reshaped().begin()) ); VERIFY( is_PointerBasedStlIterator(B.template reshaped().end()) ); VERIFY( is_DenseStlIterator(A.template reshaped().begin()) ); VERIFY( is_DenseStlIterator(A.template reshaped().end()) ); #if EIGEN_HAS_CXX11 i = 0; for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); } j = internal::random(0,A.cols()-1); i = 0; for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); } i = 0; for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; } j = 0; i = internal::random(0,A.rows()-1); for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } i = 0; for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } // check const_iterator { i = 0; for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); } i = 0; for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } j = 0; i = internal::random(0,A.rows()-1); for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } } Matrix Bc = B; i = 0; for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); } VectorType w(v.size()); i = 0; for(auto& x : w) { x = v(i++); } VERIFY_IS_EQUAL(v,w); { j = internal::random(0,A.cols()-1); auto it = A.col(j).begin(); for(i=0;i(0,A.rows()-1); auto it = A.row(i).begin(); for(j=0;j(0,A.cols()-1); // this would produce a dangling pointer: // auto it = (A+2*A).col(j).begin(); // we need to name the temporary expression: auto tmp = (A+2*A).col(j); auto it = tmp.begin(); for(i=0;i(0,A.cols()-1); // auto it = (A+2*A).col(j).begin(); // for(i=0;i=3) { VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1)); VERIFY_IS_EQUAL((A.allRows().begin()+rows/2)[1], A.row(rows/2+1)); } if(cols>=3) { VERIFY_IS_EQUAL((A.allCols().begin()+cols/2)[1], A.col(cols/2+1)); } if(rows>=2) { v(1) = v(0)-Scalar(1); VERIFY(!std::is_sorted(begin(v),end(v))); } std::sort(begin(v),end(v)); VERIFY(std::is_sorted(begin(v),end(v))); VERIFY(!std::is_sorted(make_reverse_iterator(end(v)),make_reverse_iterator(begin(v)))); // std::sort with pointer-based iterator and default increment { j = internal::random(0,A.cols()-1); // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators typename ColMatrixType::ColXpr Acol = A.col(j); std::sort(begin(Acol),end(Acol)); VERIFY(std::is_sorted(Acol.cbegin(),Acol.cend())); A.setRandom(); std::sort(A.col(j).begin(),A.col(j).end()); VERIFY(std::is_sorted(A.col(j).cbegin(),A.col(j).cend())); A.setRandom(); } // std::sort with pointer-based iterator and runtime increment { i = internal::random(0,A.rows()-1); typename ColMatrixType::RowXpr Arow = A.row(i); VERIFY_IS_EQUAL( std::distance(begin(Arow),end(Arow)), cols); std::sort(begin(Arow),end(Arow)); VERIFY(std::is_sorted(Arow.cbegin(),Arow.cend())); A.setRandom(); std::sort(A.row(i).begin(),A.row(i).end()); VERIFY(std::is_sorted(A.row(i).cbegin(),A.row(i).cend())); A.setRandom(); } // std::sort with generic iterator { auto B1 = B.reshaped(); std::sort(begin(B1),end(B1)); VERIFY(std::is_sorted(B1.cbegin(),B1.cend())); B.setRandom(); // assertion because nested expressions are different // std::sort(B.reshaped().begin(),B.reshaped().end()); // VERIFY(std::is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); // B.setRandom(); } { j = internal::random(0,A.cols()-1); typename ColMatrixType::ColXpr Acol = A.col(j); std::partial_sum(begin(Acol), end(Acol), begin(v)); VERIFY_IS_EQUAL(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last))); // inplace std::partial_sum(begin(Acol), end(Acol), begin(Acol)); VERIFY_IS_EQUAL(v, Acol); } if(rows>=3) { // stress random access v.setRandom(); VectorType v1 = v; std::sort(begin(v1),end(v1)); std::nth_element(v.begin(), v.begin()+rows/2, v.end()); VERIFY_IS_APPROX(v1(rows/2), v(rows/2)); v.setRandom(); v1 = v; std::sort(begin(v1)+rows/2,end(v1)); std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end()); VERIFY_IS_APPROX(v1(rows/4), v(rows/4)); } #if EIGEN_HAS_CXX11 j = 0; for(auto c : A.allCols()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; } j = 0; for(auto c : B.allCols()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; } j = 0; for(auto c : B.allCols()) { i = 0; for(auto& x : c) { VERIFY_IS_EQUAL(x, B(i,j)); x = A(i,j); ++i; } ++j; } VERIFY_IS_APPROX(A,B); B = Bc; // restore B i = 0; for(auto r : A.allRows()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; } i = 0; for(auto r : B.allRows()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; } { RowVectorType row = RowVectorType::Random(cols); A.rowwise() = row; VERIFY( std::all_of(A.allRows().begin(), A.allRows().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.norm(),row.norm()); }) ); VectorType col = VectorType::Random(rows); A.colwise() = col; VERIFY( std::all_of(A.allCols().begin(), A.allCols().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.norm(),col.norm()); }) ); } #endif } EIGEN_DECLARE_TEST(stl_iterators) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( test_range_for_loop() )); CALL_SUBTEST_1(( test_range_for_loop() )); CALL_SUBTEST_1(( test_range_for_loop(internal::random(5,10), internal::random(5,10)) )); CALL_SUBTEST_1(( test_range_for_loop(internal::random(10,200), internal::random(10,200)) )); } }