// g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out #include #include #include using namespace std; using namespace Eigen; #ifndef SCALAR #define SCALAR std::complex // #define SCALAR double #endif typedef SCALAR Scalar; typedef NumTraits::Real RealScalar; typedef Matrix A; typedef Matrix B; typedef Matrix C; #ifdef HAVE_BLAS extern "C" { #include } static float fone = 1; static float fzero = 0; static double done = 1; static double szero = 0; static std::complex cfone = 1; static std::complex cfzero = 0; static std::complex cdone = 1; static std::complex cdzero = 0; static char notrans = 'N'; static char trans = 'T'; static char nonunit = 'N'; static char lower = 'L'; static char right = 'R'; static int intone = 1; void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); sgemm_(¬rans,¬rans,&M,&N,&K,&fone, const_cast(a.data()),&lda, const_cast(b.data()),&ldb,&fone, c.data(),&ldc); } void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, const_cast((const float*)a.data()),&lda, const_cast((const float*)b.data()),&ldb,(float*)&cfone, (float*)c.data(),&ldc); } void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, const_cast((const double*)a.data()),&lda, const_cast((const double*)b.data()),&ldb,(double*)&cdone, (double*)c.data(),&ldc); } void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); dgemm_(¬rans,¬rans,&M,&N,&K,&done, const_cast(a.data()),&lda, const_cast(b.data()),&ldb,&done, c.data(),&ldc); } #endif template EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) { c.noalias() += a * b; } int main(int argc, char ** argv) { std::ptrdiff_t l1 = ei_queryL1CacheSize(); std::ptrdiff_t l2 = ei_queryTopLevelCacheSize(); std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n"; std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n"; typedef ei_product_blocking_traits Blocking; std::cout << "Register blocking = " << Blocking::mr << " x " << Blocking::nr << "\n"; int rep = 1; // number of repetitions per try int tries = 2; // number of tries, we keep the best int s = 2048; int cache_size = -1; bool need_help = false; for (int i=1; i c t p\n"; return 1; } if(cache_size>0) setCpuCacheSizes(cache_size,96*cache_size); int m = s; int n = s; int p = s; A a(m,n); a.setRandom(); B b(n,p); b.setRandom(); C c(m,p); c.setOnes(); std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; std::ptrdiff_t cm(m), cn(n), ck(p); computeProductBlockingSizes(ck, cm, cn); std::cout << "blocking size = " << cm << " x " << ck << "\n"; C r = c; // check the parallel product is correct #ifdef EIGEN_HAS_OPENMP int procs = omp_get_max_threads(); if(procs>1) { #ifdef HAVE_BLAS blas_gemm(a,b,r); #else omp_set_num_threads(1); r.noalias() += a * b; omp_set_num_threads(procs); #endif c.noalias() += a * b; if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; } #endif #ifdef HAVE_BLAS BenchTimer tblas; BENCH(tblas, tries, rep, blas_gemm(a,b,c)); std::cout << "blas cpu " << tblas.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n"; std::cout << "blas real " << tblas.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; #endif BenchTimer tmt; BENCH(tmt, tries, rep, gemm(a,b,c)); std::cout << "eigen cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; std::cout << "eigen real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; #ifdef EIGEN_HAS_OPENMP if(procs>1) { BenchTimer tmono; //omp_set_num_threads(1); Eigen::setNbThreads(1); BENCH(tmono, tries, rep, gemm(a,b,c)); std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n"; std::cout << "eigen mono real " << tmono.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; } #endif return 0; }