// To use the simple FFT implementation // g++ -o demofft -I.. -Wall -O3 FFT.cpp // To use the FFTW implementation // g++ -o demofft -I.. -DUSE_FFTW -Wall -O3 FFT.cpp -lfftw3 -lfftw3f -lfftw3l #ifdef USE_FFTW #include #endif #include #include #include #include #include #include using namespace std; using namespace Eigen; template T mag2(T a) { return a*a; } template T mag2(std::complex a) { return norm(a); } template T mag2(const std::vector & vec) { T out=0; for (size_t k=0;k T mag2(const std::vector > & vec) { T out=0; for (size_t k=0;k vector operator-(const vector & a,const vector & b ) { vector c(a); for (size_t k=0;k void RandomFill(std::vector & vec) { for (size_t k=0;k void RandomFill(std::vector > & vec) { for (size_t k=0;k ( T( rand() )/T(RAND_MAX) - .5, T( rand() )/T(RAND_MAX) - .5); } template void fwd_inv(size_t nfft) { typedef typename NumTraits::Real Scalar; vector timebuf(nfft); RandomFill(timebuf); vector freqbuf; static FFT fft; fft.fwd(freqbuf,timebuf); vector timebuf2; fft.inv(timebuf2,freqbuf); long double rmse = mag2(timebuf - timebuf2) / mag2(timebuf); cout << "roundtrip rmse: " << rmse << endl; } template void two_demos(int nfft) { cout << " scalar "; fwd_inv >(nfft); cout << " complex "; fwd_inv,std::complex >(nfft); } void demo_all_types(int nfft) { cout << "nfft=" << nfft << endl; cout << " float" << endl; two_demos(nfft); cout << " double" << endl; two_demos(nfft); cout << " long double" << endl; two_demos(nfft); } int main() { demo_all_types( 2*3*4*5*7 ); demo_all_types( 2*9*16*25 ); demo_all_types( 1024 ); return 0; }