namespace Eigen {
/** \eigenManualPage SparseQuickRefPage Quick reference guide for sparse matrices
\eigenAutoToc
Category | Operations | Notes |
Constructor |
\code
SparseMatrix sm1(1000,1000);
SparseMatrix,RowMajor> sm2;
\endcode
| Default is ColMajor |
Resize/Reserve |
\code
sm1.resize(m,n); // Change sm1 to a m x n matrix.
sm1.reserve(nnz); // Allocate room for nnz nonzeros elements.
\endcode
|
Note that when calling reserve(), it is not required that nnz is the exact number of nonzero elements in the final matrix. However, an exact estimation will avoid multiple reallocations during the insertion phase. |
Assignment |
\code
SparseMatrix sm1;
// Initialize sm2 with sm1.
SparseMatrix sm2(sm1), sm3;
// Assignment and evaluations modify the storage order.
sm3 = sm1;
\endcode
|
The copy constructor can be used to convert from a storage order to another |
Element-wise Insertion |
\code
// Insert a new element;
sm1.insert(i, j) = v_ij;
// Update the value v_ij
sm1.coeffRef(i,j) = v_ij;
sm1.coeffRef(i,j) += v_ij;
sm1.coeffRef(i,j) -= v_ij;
\endcode
|
insert() assumes that the element does not already exist; otherwise, use coeffRef() |
Batch insertion |
\code
std::vector< Eigen::Triplet > tripletList;
tripletList.reserve(estimation_of_entries);
// -- Fill tripletList with nonzero elements...
sm1.setFromTriplets(TripletList.begin(), TripletList.end());
\endcode
|
A complete example is available at \link TutorialSparseFilling Triplet Insertion \endlink. |
Constant or Random Insertion |
\code
sm1.setZero();
\endcode
|
Remove all non-zero coefficients |
\section SparseBasicInfos Matrix properties
Beyond the basic functions rows() and cols(), there are some useful functions that are available to easily get some information from the matrix.
Operations | Code | Notes |
add subtract |
\code
sm3 = sm1 + sm2;
sm3 = sm1 - sm2;
sm2 += sm1;
sm2 -= sm1; \endcode
|
sm1 and sm2 should have the same storage order
|
scalar product | \code
sm3 = sm1 * s1; sm3 *= s1;
sm3 = s1 * sm1 + s2 * sm2; sm3 /= s1;\endcode
|
Many combinations are possible if the dimensions and the storage order agree.
|
%Sparse %Product |
\code
sm3 = sm1 * sm2;
dm2 = sm1 * dm1;
dv2 = sm1 * dv1;
\endcode |
|
transposition, adjoint |
\code
sm2 = sm1.transpose();
sm2 = sm1.adjoint();
\endcode |
Note that the transposition change the storage order. There is no support for transposeInPlace().
|
Permutation |
\code
perm.indices(); // Reference to the vector of indices
sm1.twistedBy(perm); // Permute rows and columns
sm2 = sm1 * perm; // Permute the columns
sm2 = perm * sm1; // Permute the columns
\endcode
|
|
Component-wise ops
|
\code
sm1.cwiseProduct(sm2);
sm1.cwiseQuotient(sm2);
sm1.cwiseMin(sm2);
sm1.cwiseMax(sm2);
sm1.cwiseAbs();
sm1.cwiseSqrt();
\endcode |
sm1 and sm2 should have the same storage order
|
\section sparseotherops Other supported operations
Code | Notes |
Sub-matrices |
\code
sm1.block(startRow, startCol, rows, cols);
sm1.block(startRow, startCol);
sm1.topLeftCorner(rows, cols);
sm1.topRightCorner(rows, cols);
sm1.bottomLeftCorner( rows, cols);
sm1.bottomRightCorner( rows, cols);
\endcode
|
Contrary to dense matrices, here all these methods are read-only.\n
See \ref TutorialSparse_SubMatrices and below for read-write sub-matrices.
|
Range |
\code
sm1.innerVector(outer); // RW
sm1.innerVectors(start, size); // RW
sm1.leftCols(size); // RW
sm2.rightCols(size); // RO because sm2 is row-major
sm1.middleRows(start, numRows); // RO because sm1 is column-major
sm1.middleCols(start, numCols); // RW
sm1.col(j); // RW
\endcode
|
A inner vector is either a row (for row-major) or a column (for column-major).\n
As stated earlier, for a read-write sub-matrix (RW), the evaluation can be done in a matrix with different storage order.
|
Triangular and selfadjoint views |
\code
sm2 = sm1.triangularview();
sm2 = sm1.selfadjointview();
\endcode
|
Several combination between triangular views and blocks views are possible
\code
\endcode |
Triangular solve |
\code
dv2 = sm1.triangularView().solve(dv1);
dv2 = sm1.topLeftCorner(size, size)
.triangularView().solve(dv1);
\endcode
|
For general sparse solve, Use any suitable module described at \ref TopicSparseSystems |
Low-level API |
\code
sm1.valuePtr(); // Pointer to the values
sm1.innerIndexPtr(); // Pointer to the indices.
sm1.outerIndexPtr(); // Pointer to the beginning of each inner vector
\endcode
|
If the matrix is not in compressed form, `makeCompressed()` should be called before.\n
Note that these functions are mostly provided for interoperability purposes with external libraries.\n
A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section |
Mapping external buffers |
\code
int outerIndexPtr[cols+1];
int innerIndices[nnz];
double values[nnz];
Map > sm1(rows,cols,nnz,outerIndexPtr, // read-write
innerIndices,values);
Map > sm2(...); // read-only
\endcode
|
As for dense matrices, class Map can be used to see external buffers as an %Eigen's SparseMatrix object. |
*/
}