// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_reduction_cuda #define EIGEN_USE_GPU #include "main.h" #include template static void test_full_reductions() { Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); const int num_rows = internal::random(1024, 5*1024); const int num_cols = internal::random(1024, 5*1024); Tensor in(num_rows, num_cols); in.setRandom(); Tensor full_redux(1); full_redux = in.sum(); std::size_t in_bytes = in.size() * sizeof(float); std::size_t out_bytes = full_redux.size() * sizeof(float); float* gpu_in_ptr = static_cast(gpu_device.allocate(in_bytes)); float* gpu_out_ptr = static_cast(gpu_device.allocate(out_bytes)); gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); TensorMap > in_gpu(gpu_in_ptr, num_rows, num_cols); TensorMap > out_gpu(gpu_out_ptr, 1); out_gpu.device(gpu_device) = in_gpu.sum(); Tensor full_redux_gpu(1); gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); gpu_device.synchronize(); // Check that the CPU and GPU reductions return the same result. VERIFY_IS_APPROX(full_redux(0), full_redux_gpu(0)); } void test_cxx11_tensor_reduction_cuda() { CALL_SUBTEST(test_full_reductions()); CALL_SUBTEST(test_full_reductions()); }