// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "sparse.h" template bool test_random_setter(SparseMatrix& sm, const DenseType& ref, const std::vector& nonzeroCoords) { typedef SparseMatrix SparseType; { sm.setZero(); SetterType w(sm); std::vector remaining = nonzeroCoords; while(!remaining.empty()) { int i = ei_random(0,remaining.size()-1); w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); remaining[i] = remaining.back(); remaining.pop_back(); } } return sm.isApprox(ref); } template bool test_random_setter(DynamicSparseMatrix& sm, const DenseType& ref, const std::vector& nonzeroCoords) { sm.setZero(); std::vector remaining = nonzeroCoords; while(!remaining.empty()) { int i = ei_random(0,remaining.size()-1); sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); remaining[i] = remaining.back(); remaining.pop_back(); } return sm.isApprox(ref); } template void sparse_basic(const SparseMatrixType& ref) { const int rows = ref.rows(); const int cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = std::max(8./(rows*cols), 0.01); typedef Matrix DenseMatrix; typedef Matrix DenseVector; Scalar eps = 1e-6; SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); Scalar s1 = ei_random(); std::vector zeroCoords; std::vector nonzeroCoords; initSparse(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return; // test coeff and coeffRef for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(ei_is_same_type >::ret) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); VERIFY_IS_APPROX(m, refMat); /* // test InnerIterators and Block expressions for (int t=0; t<10; ++t) { int j = ei_random(0,cols-1); int i = ei_random(0,rows-1); int w = ei_random(1,cols-j-1); int h = ei_random(1,rows-i-1); // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); for(int c=0; c w(m); // for (int i=0; icoeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); // } // } // VERIFY_IS_APPROX(m, refMat); // random setter // { // m.setZero(); // VERIFY_IS_NOT_APPROX(m, refMat); // SparseSetter w(m); // std::vector remaining = nonzeroCoords; // while(!remaining.empty()) // { // int i = ei_random(0,remaining.size()-1); // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); // remaining[i] = remaining.back(); // remaining.pop_back(); // } // } // VERIFY_IS_APPROX(m, refMat); VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); #ifdef EIGEN_UNORDERED_MAP_SUPPORT VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); #endif #ifdef _DENSE_HASH_MAP_H_ VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); #endif #ifdef _SPARSE_HASH_MAP_H_ VERIFY(( test_random_setter >(m,refMat,nonzeroCoords) )); #endif // test fillrand { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); m2.startFill(); for (int j=0; j(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.fillrand(i,j) = m1(i,j) = ei_random(); } } m2.endFill(); //std::cerr << m1 << "\n\n" << m2 << "\n"; VERIFY_IS_APPROX(m2,m1); } // test RandomSetter /*{ SparseMatrixType m1(rows,cols), m2(rows,cols); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); initSparse(density, refM1, m1); { Eigen::RandomSetter setter(m2); for (int j=0; j(density, refM1, m1); initSparse(density, refM2, m2); initSparse(density, refM3, m3); initSparse(density, refM4, m4); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); } // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); int j0 = ei_random(0,rows-1); int j1 = ei_random(0,rows-1); VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); } // test matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse(density, refMat2, m2); initSparse(density, refMat3, m3); initSparse(density, refMat4, m4); VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); // sparse * dense VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); // dense * sparse VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); } // test self adjoint products { DenseMatrix b = DenseMatrix::Random(rows, rows); DenseMatrix x = DenseMatrix::Random(rows, rows); DenseMatrix refX = DenseMatrix::Random(rows, rows); DenseMatrix refUp = DenseMatrix::Zero(rows, rows); DenseMatrix refLo = DenseMatrix::Zero(rows, rows); DenseMatrix refS = DenseMatrix::Zero(rows, rows); SparseMatrixType mUp(rows, rows); SparseMatrixType mLo(rows, rows); SparseMatrixType mS(rows, rows); do { initSparse(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); } while (refUp.isZero()); refLo = refUp.transpose().conjugate(); mLo = mUp.transpose().conjugate(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; for (int k=0; k()*b, refX=refS*b); VERIFY_IS_APPROX(x=mLo.template marked()*b, refX=refS*b); VERIFY_IS_APPROX(x=mS.template marked()*b, refX=refS*b); } // test prune { SparseMatrixType m2(rows, rows); DenseMatrix refM2(rows, rows); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; m2.startFill(); for (int j=0; j(0,1); if (x<0.1) { // do nothing } else if (x<0.5) { countFalseNonZero++; m2.fill(i,j) = Scalar(0); } else { countTrueNonZero++; m2.fill(i,j) = refM2(i,j) = Scalar(1); } } m2.endFill(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); m2.prune(1); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } } void test_sparse_basic() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( sparse_basic(SparseMatrix(8, 8)) ); CALL_SUBTEST( sparse_basic(SparseMatrix >(16, 16)) ); CALL_SUBTEST( sparse_basic(SparseMatrix(33, 33)) ); CALL_SUBTEST( sparse_basic(DynamicSparseMatrix(8, 8)) ); } }