// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018 Eugene Zhulenev // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_USE_THREADS #include "main.h" #include using Eigen::Tensor; using Eigen::RowMajor; using Eigen::ColMajor; // A set of tests to verify that different TensorExecutor strategies yields the // same results for all the ops, supporting tiled evaluation. template static array RandomDims(int min_dim = 1, int max_dim = 20) { array dims; for (int i = 0; i < NumDims; ++i) { dims[i] = internal::random(min_dim, max_dim); } return dims; } template static void test_execute_unary_expr(Device d) { static constexpr int Options = 0 | Layout; // Pick a large enough tensor size to bypass small tensor block evaluation // optimization. auto dims = RandomDims(50 / NumDims, 100 / NumDims); Tensor src(dims); Tensor dst(dims); src.setRandom(); const auto expr = src.square(); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { T square = src.coeff(i) * src.coeff(i); VERIFY_IS_EQUAL(square, dst.coeff(i)); } } template static void test_execute_binary_expr(Device d) { static constexpr int Options = 0 | Layout; // Pick a large enough tensor size to bypass small tensor block evaluation // optimization. auto dims = RandomDims(50 / NumDims, 100 / NumDims); Tensor lhs(dims); Tensor rhs(dims); Tensor dst(dims); lhs.setRandom(); rhs.setRandom(); const auto expr = lhs + rhs; using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { T sum = lhs.coeff(i) + rhs.coeff(i); VERIFY_IS_EQUAL(sum, dst.coeff(i)); } } template static void test_execute_broadcasting(Device d) { static constexpr int Options = 0 | Layout; auto dims = RandomDims(1, 10); Tensor src(dims); src.setRandom(); const auto broadcasts = RandomDims(1, 7); const auto expr = src.broadcast(broadcasts); // We assume that broadcasting on a default device is tested and correct, so // we can rely on it to verify correctness of tensor executor and tiling. Tensor golden; golden = expr; // Now do the broadcasting using configured tensor executor. Tensor dst(golden.dimensions()); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_chipping_rvalue(Device d) { auto dims = RandomDims(1, 10); Tensor src(dims); src.setRandom(); #define TEST_CHIPPING(CHIP_DIM) \ if (NumDims > (CHIP_DIM)) { \ const auto offset = internal::random(0, dims[(CHIP_DIM)] - 1); \ const auto expr = src.template chip<(CHIP_DIM)>(offset); \ \ Tensor golden; \ golden = expr; \ \ Tensor dst(golden.dimensions()); \ \ using Assign = TensorAssignOp; \ using Executor = internal::TensorExecutor; \ \ Executor::run(Assign(dst, expr), d); \ \ for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { \ VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); \ } \ } TEST_CHIPPING(0) TEST_CHIPPING(1) TEST_CHIPPING(2) TEST_CHIPPING(3) TEST_CHIPPING(4) TEST_CHIPPING(5) #undef TEST_CHIPPING } template static void test_execute_chipping_lvalue(Device d) { auto dims = RandomDims(1, 10); #define TEST_CHIPPING(CHIP_DIM) \ if (NumDims > (CHIP_DIM)) { \ /* Generate random data that we'll assign to the chipped tensor dim. */ \ array src_dims; \ for (int i = 0; i < NumDims - 1; ++i) { \ int dim = i < (CHIP_DIM) ? i : i + 1; \ src_dims[i] = dims[dim]; \ } \ \ Tensor src(src_dims); \ src.setRandom(); \ \ const auto offset = internal::random(0, dims[(CHIP_DIM)] - 1); \ \ /* Generate random data to fill non-chipped dimensions*/ \ Tensor random(dims); \ random.setRandom(); \ \ Tensor golden(dims); \ golden = random; \ golden.template chip<(CHIP_DIM)>(offset) = src; \ \ Tensor dst(dims); \ dst = random; \ auto expr = dst.template chip<(CHIP_DIM)>(offset); \ \ using Assign = TensorAssignOp; \ using Executor = internal::TensorExecutor; \ \ Executor::run(Assign(expr, src), d); \ \ for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { \ VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); \ } \ } TEST_CHIPPING(0) TEST_CHIPPING(1) TEST_CHIPPING(2) TEST_CHIPPING(3) TEST_CHIPPING(4) TEST_CHIPPING(5) #undef TEST_CHIPPING } template static void test_execute_shuffle_rvalue(Device d) { static constexpr int Options = 0 | Layout; auto dims = RandomDims(1, 10); Tensor src(dims); src.setRandom(); // Create a random dimension re-ordering/shuffle. std::vector shuffle; for (int i = 0; i < NumDims; ++i) shuffle.push_back(i); std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937()); const auto expr = src.shuffle(shuffle); // We assume that shuffling on a default device is tested and correct, so // we can rely on it to verify correctness of tensor executor and tiling. Tensor golden; golden = expr; // Now do the shuffling using configured tensor executor. Tensor dst(golden.dimensions()); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_shuffle_lvalue(Device d) { static constexpr int Options = 0 | Layout; auto dims = RandomDims(5, 10); Tensor src(dims); src.setRandom(); // Create a random dimension re-ordering/shuffle. std::vector shuffle; for (int i = 0; i < NumDims; ++i) shuffle.push_back(i); std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937()); array shuffled_dims; for (int i = 0; i < NumDims; ++i) shuffled_dims[shuffle[i]] = dims[i]; // We assume that shuffling on a default device is tested and correct, so // we can rely on it to verify correctness of tensor executor and tiling. Tensor golden(shuffled_dims); golden.shuffle(shuffle) = src; // Now do the shuffling using configured tensor executor. Tensor dst(shuffled_dims); auto expr = dst.shuffle(shuffle); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(expr, src), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_reduction(Device d) { static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); static constexpr int ReducedDims = NumDims - 2; static constexpr int Options = 0 | Layout; auto dims = RandomDims(5, 10); Tensor src(dims); src.setRandom(); // Pick two random and unique reduction dimensions. int reduction0 = internal::random(0, NumDims - 1); int reduction1 = internal::random(0, NumDims - 1); while (reduction0 == reduction1) { reduction1 = internal::random(0, NumDims - 1); } DSizes reduction_axis; reduction_axis[0] = reduction0; reduction_axis[1] = reduction1; Tensor golden = src.sum(reduction_axis); // Now do the reduction using configured tensor executor. Tensor dst(golden.dimensions()); auto expr = src.sum(reduction_axis); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_reshape(Device d) { static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); static constexpr int ReshapedDims = NumDims - 1; static constexpr int Options = 0 | Layout; auto dims = RandomDims(5, 10); Tensor src(dims); src.setRandom(); // Multiple 0th dimension and then shuffle. std::vector shuffle; for (int i = 0; i < ReshapedDims; ++i) shuffle.push_back(i); std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937()); DSizes reshaped_dims; reshaped_dims[shuffle[0]] = dims[0] * dims[1]; for (int i = 1; i < ReshapedDims; ++i) reshaped_dims[shuffle[i]] = dims[i + 1]; Tensor golden = src.reshape(reshaped_dims); // Now reshape using configured tensor executor. Tensor dst(golden.dimensions()); auto expr = src.reshape(reshaped_dims); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_slice_rvalue(Device d) { static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); static constexpr int Options = 0 | Layout; auto dims = RandomDims(5, 10); Tensor src(dims); src.setRandom(); // Pick a random slice of src tensor. auto slice_start = DSizes(RandomDims()); auto slice_size = DSizes(RandomDims()); // Make sure that slice start + size do not overflow tensor dims. for (int i = 0; i < NumDims; ++i) { slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]); slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]); } Tensor golden = src.slice(slice_start, slice_size); // Now reshape using configured tensor executor. Tensor dst(golden.dimensions()); auto expr = src.slice(slice_start, slice_size); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_slice_lvalue(Device d) { static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); static constexpr int Options = 0 | Layout; auto dims = RandomDims(5, 10); Tensor src(dims); src.setRandom(); // Pick a random slice of src tensor. auto slice_start = DSizes(RandomDims(1, 10)); auto slice_size = DSizes(RandomDims(1, 10)); // Make sure that slice start + size do not overflow tensor dims. for (int i = 0; i < NumDims; ++i) { slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]); slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]); } Tensor slice(slice_size); slice.setRandom(); // Assign a slice using default executor. Tensor golden = src; golden.slice(slice_start, slice_size) = slice; // And using configured execution strategy. Tensor dst = src; auto expr = dst.slice(slice_start, slice_size); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(expr, slice), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_broadcasting_of_forced_eval(Device d) { static constexpr int Options = 0 | Layout; auto dims = RandomDims(1, 10); Tensor src(dims); src.setRandom(); const auto broadcasts = RandomDims(1, 7); const auto expr = src.square().eval().broadcast(broadcasts); // We assume that broadcasting on a default device is tested and correct, so // we can rely on it to verify correctness of tensor executor and tiling. Tensor golden; golden = expr; // Now do the broadcasting using configured tensor executor. Tensor dst(golden.dimensions()); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template struct DummyGenerator { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T operator()(const array & dims) const { T result = static_cast(0); for (int i = 0; i < NumDims; ++i) { result += static_cast((i + 1) * dims[i]); } return result; } }; template static void test_execute_generator_op(Device d) { static constexpr int Options = 0 | Layout; auto dims = RandomDims(20, 30); Tensor src(dims); src.setRandom(); const auto expr = src.generate(DummyGenerator()); // We assume that generator on a default device is tested and correct, so // we can rely on it to verify correctness of tensor executor and tiling. Tensor golden; golden = expr; // Now do the broadcasting using configured tensor executor. Tensor dst(golden.dimensions()); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_execute_reverse_rvalue(Device d) { static constexpr int Options = 0 | Layout; auto dims = RandomDims(1, numext::pow(1000000.0, 1.0 / NumDims)); Tensor src(dims); src.setRandom(); // Reverse half of the dimensions. Eigen::array reverse; for (int i = 0; i < NumDims; ++i) reverse[i] = (dims[i] % 2 == 0); const auto expr = src.reverse(reverse); // We assume that reversing on a default device is tested and correct, so // we can rely on it to verify correctness of tensor executor and tiling. Tensor golden; golden = expr; // Now do the reversing using configured tensor executor. Tensor dst(golden.dimensions()); using Assign = TensorAssignOp; using Executor = internal::TensorExecutor; Executor::run(Assign(dst, expr), d); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); } } template static void test_async_execute_unary_expr(Device d) { static constexpr int Options = 0 | Layout; // Pick a large enough tensor size to bypass small tensor block evaluation // optimization. auto dims = RandomDims(50 / NumDims, 100 / NumDims); Tensor src(dims); Tensor dst(dims); src.setRandom(); const auto expr = src.square(); using Assign = TensorAssignOp; using Executor = internal::TensorAsyncExecutor; Eigen::Barrier done(1); Executor::runAsync(Assign(dst, expr), d, [&done]() { done.Notify(); }); done.Wait(); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { T square = src.coeff(i) * src.coeff(i); VERIFY_IS_EQUAL(square, dst.coeff(i)); } } template static void test_async_execute_binary_expr(Device d) { static constexpr int Options = 0 | Layout; // Pick a large enough tensor size to bypass small tensor block evaluation // optimization. auto dims = RandomDims(50 / NumDims, 100 / NumDims); Tensor lhs(dims); Tensor rhs(dims); Tensor dst(dims); lhs.setRandom(); rhs.setRandom(); const auto expr = lhs + rhs; using Assign = TensorAssignOp; using Executor = internal::TensorAsyncExecutor; Eigen::Barrier done(1); Executor::runAsync(Assign(dst, expr), d, [&done]() { done.Notify(); }); done.Wait(); for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { T sum = lhs.coeff(i) + rhs.coeff(i); VERIFY_IS_EQUAL(sum, dst.coeff(i)); } } #ifdef EIGEN_DONT_VECTORIZE #define VECTORIZABLE(VAL) !EIGEN_DONT_VECTORIZE && VAL #else #define VECTORIZABLE(VAL) VAL #endif #define CALL_SUBTEST_PART(PART) \ CALL_SUBTEST_##PART #define CALL_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(default_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))) // NOTE: Currently only ThreadPoolDevice supports async expression evaluation. #define CALL_ASYNC_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))); \ CALL_SUBTEST_PART(PART)((NAME(tp_device))) EIGEN_DECLARE_TEST(cxx11_tensor_executor) { Eigen::DefaultDevice default_device; // Default device is unused in ASYNC tests. EIGEN_UNUSED_VARIABLE(default_device); const auto num_threads = internal::random(20, 24); Eigen::ThreadPool tp(num_threads); Eigen::ThreadPoolDevice tp_device(&tp, num_threads); CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 3); CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 4); CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 5); CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 3); CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 4); CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 5); CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 3); CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 4); CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 5); CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 3); CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 4); CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 5); CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 3); CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 4); CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 5); CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 3); CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 4); CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 5); CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 3); CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 4); CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 5); CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 2); CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 3); CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 4); CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 5); CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 2); CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 3); CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 4); CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 5); CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 2); CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 3); CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 4); CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 5); CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 2); CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 3); CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 4); CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 5); CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 2); CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 3); CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 4); CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 5); CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 2); CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 3); CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 4); CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 5); CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 1); CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 2); CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 3); CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 4); CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 5); CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 3); CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 4); CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 5); CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 3); CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 4); CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 5); // Force CMake to split this test. // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16 } #undef CALL_SUBTEST_COMBINATIONS