// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <limits> #include <Eigen/Eigenvalues> template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) { typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType; // Test basic functionality: T is triangular and A = U T U* for(int counter = 0; counter < g_repeat; ++counter) { MatrixType A = MatrixType::Random(size, size); ComplexSchur<MatrixType> schurOfA(A); VERIFY_IS_EQUAL(schurOfA.info(), Success); ComplexMatrixType U = schurOfA.matrixU(); ComplexMatrixType T = schurOfA.matrixT(); for(int row = 1; row < size; ++row) { for(int col = 0; col < row; ++col) { VERIFY(T(row,col) == (typename MatrixType::Scalar)0); } } VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint()); } // Test asserts when not initialized ComplexSchur<MatrixType> csUninitialized; VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); VERIFY_RAISES_ASSERT(csUninitialized.matrixU()); VERIFY_RAISES_ASSERT(csUninitialized.info()); // Test whether compute() and constructor returns same result MatrixType A = MatrixType::Random(size, size); ComplexSchur<MatrixType> cs1; cs1.compute(A); ComplexSchur<MatrixType> cs2(A); VERIFY_IS_EQUAL(cs1.info(), Success); VERIFY_IS_EQUAL(cs2.info(), Success); VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU()); // Test maximum number of iterations ComplexSchur<MatrixType> cs3; cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); VERIFY_IS_EQUAL(cs3.info(), Success); VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT()); VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU()); cs3.setMaxIterations(1).compute(A); VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success); VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1); MatrixType Atriangular = A; Atriangular.template triangularView<StrictlyLower>().setZero(); cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations VERIFY_IS_EQUAL(cs3.info(), Success); VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>()); VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size)); // Test computation of only T, not U ComplexSchur<MatrixType> csOnlyT(A, false); VERIFY_IS_EQUAL(csOnlyT.info(), Success); VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); VERIFY_RAISES_ASSERT(csOnlyT.matrixU()); if (size > 1) { // Test matrix with NaN A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); ComplexSchur<MatrixType> csNaN(A); VERIFY_IS_EQUAL(csNaN.info(), NoConvergence); } } void test_schur_complex() { CALL_SUBTEST_1(( schur<Matrix4cd>() )); CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) )); CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() )); CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() )); // Test problem size constructors CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10)); }