// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ALIGNED_VECTOR3 #define EIGEN_ALIGNED_VECTOR3 #include namespace Eigen { /** \ingroup Unsupported_modules * \defgroup AlignedVector3_Module Aligned vector3 module * * \code * #include * \endcode */ //@{ /** \class AlignedVector3 * * \brief A vectorization friendly 3D vector * * This class represents a 3D vector internally using a 4D vector * such that vectorization can be seamlessly enabled. Of course, * the same result can be achieved by directly using a 4D vector. * This class makes this process simpler. * */ // TODO specialize Cwise template class AlignedVector3; template struct ei_traits > : ei_traits > { }; template class AlignedVector3 : public MatrixBase > { typedef Matrix<_Scalar,4,1> CoeffType; CoeffType m_coeffs; public: EIGEN_GENERIC_PUBLIC_INTERFACE(AlignedVector3) using Base::operator*; inline int rows() const { return 3; } inline int cols() const { return 1; } inline const Scalar& coeff(int row, int col) const { return m_coeffs.coeff(row, col); } inline Scalar& coeffRef(int row, int col) { return m_coeffs.coeffRef(row, col); } inline const Scalar& coeff(int index) const { return m_coeffs.coeff(index); } inline Scalar& coeffRef(int index) { return m_coeffs.coeffRef(index);} inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, Scalar(0)) {} inline AlignedVector3(const AlignedVector3& other) : m_coeffs(other.m_coeffs) {} template struct generic_assign_selector {}; template struct generic_assign_selector { inline static void run(AlignedVector3& dest, const XprType& src) { dest.m_coeffs = src; } }; template struct generic_assign_selector { inline static void run(AlignedVector3& dest, const XprType& src) { dest.m_coeffs.template start<3>() = src; dest.m_coeffs.w() = Scalar(0); } }; template inline explicit AlignedVector3(const MatrixBase& other) { generic_assign_selector::run(*this,other.derived()); } inline AlignedVector3& operator=(const AlignedVector3& other) { m_coeffs = other.m_coeffs; return *this; } inline AlignedVector3 operator+(const AlignedVector3& other) const { return AlignedVector3(m_coeffs + other.m_coeffs); } inline AlignedVector3& operator+=(const AlignedVector3& other) { m_coeffs += other.m_coeffs; return *this; } inline AlignedVector3 operator-(const AlignedVector3& other) const { return AlignedVector3(m_coeffs - other.m_coeffs); } inline AlignedVector3 operator-=(const AlignedVector3& other) { m_coeffs -= other.m_coeffs; return *this; } inline AlignedVector3 operator*(const Scalar& s) const { return AlignedVector3(m_coeffs * s); } inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec) { return AlignedVector3(s * vec.m_coeffs); } inline AlignedVector3& operator*=(const Scalar& s) { m_coeffs *= s; return *this; } inline AlignedVector3 operator/(const Scalar& s) const { return AlignedVector3(m_coeffs / s); } inline AlignedVector3& operator/=(const Scalar& s) { m_coeffs /= s; return *this; } inline Scalar dot(const AlignedVector3& other) const { ei_assert(m_coeffs.w()==Scalar(0)); ei_assert(other.m_coeffs.w()==Scalar(0)); Scalar r = m_coeffs.dot(other.m_coeffs); return m_coeffs.dot(other.m_coeffs); } inline void normalize() { m_coeffs /= norm(); } inline AlignedVector3 normalized() { return AlignedVector3(m_coeffs / norm()); } inline Scalar sum() const { ei_assert(m_coeffs.w()==Scalar(0)); return m_coeffs.sum(); } inline Scalar squaredNorm() const { ei_assert(m_coeffs.w()==Scalar(0)); return m_coeffs.squaredNorm(); } inline Scalar norm() const { return ei_sqrt(squaredNorm()); } inline AlignedVector3 cross(const AlignedVector3& other) const { return AlignedVector3(m_coeffs.cross3(other.m_coeffs)); } template inline bool isApprox(const MatrixBase& other, RealScalar eps=precision()) const { return m_coeffs.template start<3>().isApprox(other,eps); } }; //@} } #endif // EIGEN_ALIGNED_VECTOR3