// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include #include #include #include #include #include #include #ifdef NDEBUG #undef NDEBUG #endif #ifndef EIGEN_TEST_FUNC #error EIGEN_TEST_FUNC must be defined #endif #define DEFAULT_REPEAT 10 #ifdef __ICC // disable warning #279: controlling expression is constant #pragma warning disable 279 #endif namespace Eigen { static std::vector g_test_stack; static int g_repeat; static unsigned int g_seed; static bool g_has_set_repeat, g_has_set_seed; } #define EI_PP_MAKE_STRING2(S) #S #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") #ifndef EIGEN_NO_ASSERTION_CHECKING namespace Eigen { static const bool should_raise_an_assert = false; // Used to avoid to raise two exceptions at a time in which // case the exception is not properly caught. // This may happen when a second exceptions is triggered in a destructor. static bool no_more_assert = false; static bool report_on_cerr_on_assert_failure = true; struct eigen_assert_exception { eigen_assert_exception(void) {} ~eigen_assert_exception() { Eigen::no_more_assert = false; } }; } // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while // one should have been, then the list of excecuted assertions is printed out. // // EIGEN_DEBUG_ASSERTS is not enabled by default as it // significantly increases the compilation time // and might even introduce side effects that would hide // some memory errors. #ifdef EIGEN_DEBUG_ASSERTS namespace Eigen { namespace internal { static bool push_assert = false; } static std::vector eigen_assert_list; } #define eigen_assert(a) \ if( (!(a)) && (!no_more_assert) ) \ { \ if(report_on_cerr_on_assert_failure) \ std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ Eigen::no_more_assert = true; \ throw Eigen::eigen_assert_exception(); \ } \ else if (Eigen::internal::push_assert) \ { \ eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__)" ("EI_PP_MAKE_STRING(__LINE__)") : "#a) ); \ } #define VERIFY_RAISES_ASSERT(a) \ { \ Eigen::no_more_assert = false; \ Eigen::eigen_assert_list.clear(); \ Eigen::internal::push_assert = true; \ Eigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ std::cerr << "One of the following asserts should have been triggered:\n"; \ for (uint ai=0 ; ai // required for createRandomPIMatrixOfRank static void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) { if (!condition) { std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" \ << std::endl << " " << condition_as_string << std::endl << std::endl; \ abort(); } } #define VERIFY(a) assert(a) //#define VERIFY(a) verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a)) #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b)) #define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b)) #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) #define CALL_SUBTEST(FUNC) do { \ g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ FUNC; \ g_test_stack.pop_back(); \ } while (0) #ifdef EIGEN_TEST_PART_1 #define CALL_SUBTEST_1(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_1(FUNC) #endif #ifdef EIGEN_TEST_PART_2 #define CALL_SUBTEST_2(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_2(FUNC) #endif #ifdef EIGEN_TEST_PART_3 #define CALL_SUBTEST_3(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_3(FUNC) #endif #ifdef EIGEN_TEST_PART_4 #define CALL_SUBTEST_4(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_4(FUNC) #endif #ifdef EIGEN_TEST_PART_5 #define CALL_SUBTEST_5(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_5(FUNC) #endif #ifdef EIGEN_TEST_PART_6 #define CALL_SUBTEST_6(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_6(FUNC) #endif #ifdef EIGEN_TEST_PART_7 #define CALL_SUBTEST_7(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_7(FUNC) #endif #ifdef EIGEN_TEST_PART_8 #define CALL_SUBTEST_8(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_8(FUNC) #endif #ifdef EIGEN_TEST_PART_9 #define CALL_SUBTEST_9(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_9(FUNC) #endif #ifdef EIGEN_TEST_PART_10 #define CALL_SUBTEST_10(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_10(FUNC) #endif #ifdef EIGEN_TEST_PART_11 #define CALL_SUBTEST_11(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_11(FUNC) #endif #ifdef EIGEN_TEST_PART_12 #define CALL_SUBTEST_12(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_12(FUNC) #endif #ifdef EIGEN_TEST_PART_13 #define CALL_SUBTEST_13(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_13(FUNC) #endif #ifdef EIGEN_TEST_PART_14 #define CALL_SUBTEST_14(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_14(FUNC) #endif #ifdef EIGEN_TEST_PART_15 #define CALL_SUBTEST_15(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_15(FUNC) #endif #ifdef EIGEN_TEST_PART_16 #define CALL_SUBTEST_16(FUNC) CALL_SUBTEST(FUNC) #else #define CALL_SUBTEST_16(FUNC) #endif namespace Eigen { template inline typename NumTraits::Real test_precision() { return NumTraits::dummy_precision(); } template<> inline float test_precision() { return 1e-3f; } template<> inline double test_precision() { return 1e-6; } template<> inline float test_precision >() { return test_precision(); } template<> inline double test_precision >() { return test_precision(); } template<> inline long double test_precision() { return 1e-6; } inline bool test_isApprox(const int& a, const int& b) { return internal::isApprox(a, b, test_precision()); } inline bool test_isMuchSmallerThan(const int& a, const int& b) { return internal::isMuchSmallerThan(a, b, test_precision()); } inline bool test_isApproxOrLessThan(const int& a, const int& b) { return internal::isApproxOrLessThan(a, b, test_precision()); } inline bool test_isApprox(const float& a, const float& b) { return internal::isApprox(a, b, test_precision()); } inline bool test_isMuchSmallerThan(const float& a, const float& b) { return internal::isMuchSmallerThan(a, b, test_precision()); } inline bool test_isApproxOrLessThan(const float& a, const float& b) { return internal::isApproxOrLessThan(a, b, test_precision()); } inline bool test_isApprox(const double& a, const double& b) { return internal::isApprox(a, b, test_precision()); } inline bool test_isMuchSmallerThan(const double& a, const double& b) { return internal::isMuchSmallerThan(a, b, test_precision()); } inline bool test_isApproxOrLessThan(const double& a, const double& b) { return internal::isApproxOrLessThan(a, b, test_precision()); } inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } inline bool test_isApprox(const long double& a, const long double& b) { bool ret = internal::isApprox(a, b, test_precision()); if (!ret) std::cerr << std::endl << " actual = " << a << std::endl << " expected = " << b << std::endl << std::endl; return ret; } inline bool test_isMuchSmallerThan(const long double& a, const long double& b) { return internal::isMuchSmallerThan(a, b, test_precision()); } inline bool test_isApproxOrLessThan(const long double& a, const long double& b) { return internal::isApproxOrLessThan(a, b, test_precision()); } template inline bool test_isApprox(const Type1& a, const Type2& b) { return a.isApprox(b, test_precision()); } template inline bool test_isMuchSmallerThan(const MatrixBase& m1, const MatrixBase& m2) { return m1.isMuchSmallerThan(m2, test_precision::Scalar>()); } template inline bool test_isMuchSmallerThan(const MatrixBase& m, const typename NumTraits::Scalar>::Real& s) { return m.isMuchSmallerThan(s, test_precision::Scalar>()); } template inline bool test_isUnitary(const MatrixBase& m) { return m.isUnitary(test_precision::Scalar>()); } template bool test_is_equal(const T& actual, const U& expected) { if (actual==expected) return true; // false: std::cerr << std::endl << " actual = " << actual << std::endl << " expected = " << expected << std::endl << std::endl; return false; } /** Creates a random Partial Isometry matrix of given rank. * * A partial isometry is a matrix all of whose singular values are either 0 or 1. * This is very useful to test rank-revealing algorithms. */ template void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m) { typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef Matrix VectorType; typedef Matrix MatrixAType; typedef Matrix MatrixBType; if(desired_rank == 0) { m.setZero(rows,cols); return; } if(desired_rank == 1) { // here we normalize the vectors to get a partial isometry m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); return; } MatrixAType a = MatrixAType::Random(rows,rows); MatrixType d = MatrixType::Identity(rows,cols); MatrixBType b = MatrixBType::Random(cols,cols); // set the diagonal such that only desired_rank non-zero entries reamain const Index diag_size = std::min(d.rows(),d.cols()); if(diag_size != desired_rank) d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); HouseholderQR qra(a); HouseholderQR qrb(b); m = qra.householderQ() * d * qrb.householderQ(); } } // end namespace Eigen template struct GetDifferentType; template<> struct GetDifferentType { typedef double type; }; template<> struct GetDifferentType { typedef float type; }; template struct GetDifferentType > { typedef std::complex::type> type; }; template std::string type_name() { return "other"; } template<> std::string type_name() { return "float"; } template<> std::string type_name() { return "double"; } template<> std::string type_name() { return "int"; } template<> std::string type_name >() { return "complex"; } template<> std::string type_name >() { return "complex"; } template<> std::string type_name >() { return "complex"; } // forward declaration of the main test function void EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); using namespace Eigen; void set_repeat_from_string(const char *str) { errno = 0; g_repeat = int(strtoul(str, 0, 10)); if(errno || g_repeat <= 0) { std::cout << "Invalid repeat value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_repeat = true; } void set_seed_from_string(const char *str) { errno = 0; g_seed = strtoul(str, 0, 10); if(errno || g_seed == 0) { std::cout << "Invalid seed value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_seed = true; } int main(int argc, char *argv[]) { g_has_set_repeat = false; g_has_set_seed = false; bool need_help = false; for(int i = 1; i < argc; i++) { if(argv[i][0] == 'r') { if(g_has_set_repeat) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_repeat_from_string(argv[i]+1); } else if(argv[i][0] == 's') { if(g_has_set_seed) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_seed_from_string(argv[i]+1); } else { need_help = true; } } if(need_help) { std::cout << "This test application takes the following optional arguments:" << std::endl; std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; std::cout << std::endl; std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; std::cout << "will be used as default values for these parameters." << std::endl; return 1; } char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); if(!g_has_set_repeat && env_EIGEN_REPEAT) set_repeat_from_string(env_EIGEN_REPEAT); char *env_EIGEN_SEED = getenv("EIGEN_SEED"); if(!g_has_set_seed && env_EIGEN_SEED) set_seed_from_string(env_EIGEN_SEED); if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; std::cout << "Initializing random number generator with seed " << g_seed << std::endl; srand(g_seed); std::cout << "Repeating each test " << g_repeat << " times" << std::endl; Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)); EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); return 0; }