// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/Geometry> #include <Eigen/LU> #include <Eigen/QR> template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane) { /* this test covers the following files: Hyperplane.h */ using std::abs; const Index dim = _plane.dim(); enum { Options = HyperplaneType::Options }; typedef typename HyperplaneType::Scalar Scalar; typedef typename HyperplaneType::RealScalar RealScalar; typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType; typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, HyperplaneType::AmbientDimAtCompileTime> MatrixType; VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); VectorType n0 = VectorType::Random(dim).normalized(); VectorType n1 = VectorType::Random(dim).normalized(); HyperplaneType pl0(n0, p0); HyperplaneType pl1(n1, p1); HyperplaneType pl2 = pl1; Scalar s0 = internal::random<Scalar>(); Scalar s1 = internal::random<Scalar>(); VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) ); VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); if(numext::abs2(s0)>RealScalar(1e-6)) VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0); else VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) ); VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) ); // transform if (!NumTraits<Scalar>::IsComplex) { MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ(); DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random()); Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random()); while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random(); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) .absDistance((rot*scaling*translation) * p1), Scalar(1) ); VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) .absDistance((rot*translation) * p1), Scalar(1) ); VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) ); } // casting const int Dim = HyperplaneType::AmbientDimAtCompileTime; typedef typename GetDifferentType<Scalar>::type OtherScalar; Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>(); VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1); Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>(); VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1); } template<typename Scalar> void lines() { using std::abs; typedef Hyperplane<Scalar, 2> HLine; typedef ParametrizedLine<Scalar, 2> PLine; typedef Matrix<Scalar,2,1> Vector; typedef Matrix<Scalar,3,1> CoeffsType; for(int i = 0; i < 10; i++) { Vector center = Vector::Random(); Vector u = Vector::Random(); Vector v = Vector::Random(); Scalar a = internal::random<Scalar>(); while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>(); while (u.norm() < Scalar(1e-4)) u = Vector::Random(); while (v.norm() < Scalar(1e-4)) v = Vector::Random(); HLine line_u = HLine::Through(center + u, center + a*u); HLine line_v = HLine::Through(center + v, center + a*v); // the line equations should be normalized so that a^2+b^2=1 VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); Vector result = line_u.intersection(line_v); // the lines should intersect at the point we called "center" if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9)) VERIFY_IS_APPROX(result, center); // check conversions between two types of lines PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable HLine line_u2(pl); CoeffsType converted_coeffs = line_u2.coeffs(); if(line_u2.normal().dot(line_u.normal())<Scalar(0)) converted_coeffs = -line_u2.coeffs(); VERIFY(line_u.coeffs().isApprox(converted_coeffs)); } } template<typename Scalar> void planes() { using std::abs; typedef Hyperplane<Scalar, 3> Plane; typedef Matrix<Scalar,3,1> Vector; for(int i = 0; i < 10; i++) { Vector v0 = Vector::Random(); Vector v1(v0), v2(v0); if(internal::random<double>(0,1)>0.25) v1 += Vector::Random(); if(internal::random<double>(0,1)>0.25) v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16)); if(internal::random<double>(0,1)>0.25) v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16)); Plane p0 = Plane::Through(v0, v1, v2); VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1)); } } template<typename Scalar> void hyperplane_alignment() { typedef Hyperplane<Scalar,3,AutoAlign> Plane3a; typedef Hyperplane<Scalar,3,DontAlign> Plane3u; EIGEN_ALIGN_MAX Scalar array1[4]; EIGEN_ALIGN_MAX Scalar array2[4]; EIGEN_ALIGN_MAX Scalar array3[4+1]; Scalar* array3u = array3+1; Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a; Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u; Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u; p1->coeffs().setRandom(); *p2 = *p1; *p3 = *p1; VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0 if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a)); #endif } EIGEN_DECLARE_TEST(geo_hyperplane) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) ); CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) ); CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) ); CALL_SUBTEST_2( hyperplane_alignment<float>() ); CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) ); CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) ); CALL_SUBTEST_1( lines<float>() ); CALL_SUBTEST_3( lines<double>() ); CALL_SUBTEST_2( planes<float>() ); CALL_SUBTEST_5( planes<double>() ); } }