// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void adjoint(const MatrixType& m) { /* this test covers the following files: Transpose.h Conjugate.h Dot.h */ typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols), mzero = MatrixType::zero(rows, cols), identity = Matrix ::identity(rows, rows), square = Matrix ::random(rows, rows); VectorType v1 = VectorType::random(rows), v2 = VectorType::random(rows), v3 = VectorType::random(rows), vzero = VectorType::zero(rows); Scalar s1 = ei_random(), s2 = ei_random(); // check basic compatibility of adjoint, transpose, conjugate VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); // check multiplicative behavior VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); // check basic properties of dot, norm, norm2 typedef typename NumTraits::Real RealScalar; VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3)); VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.dot(v1)+ei_conj(s2)*v3.dot(v2)); VERIFY_IS_APPROX(ei_conj(v1.dot(v2)), v2.dot(v1)); VERIFY_IS_APPROX(ei_abs(v1.dot(v1)), v1.norm2()); if(NumTraits::HasFloatingPoint) VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm()); VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast(1)); if(NumTraits::HasFloatingPoint) VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast(1)); // check compatibility of dot and adjoint VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2)); // like in testBasicStuff, test operator() to check const-qualification int r = ei_random(0, rows-1), c = ei_random(0, cols-1); VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); } void test_adjoint() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( adjoint(Matrix()) ); CALL_SUBTEST( adjoint(Matrix4d()) ); CALL_SUBTEST( adjoint(MatrixXcf(3, 3)) ); CALL_SUBTEST( adjoint(MatrixXi(8, 12)) ); CALL_SUBTEST( adjoint(MatrixXcd(20, 20)) ); } // test a large matrix only once CALL_SUBTEST( adjoint(Matrix()) ); }