// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018 Andy Davis // Copyright (C) 2018 Eugene Zhulenev // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include #include using Eigen::Tensor; using Eigen::Index; using Eigen::RowMajor; using Eigen::ColMajor; template static const T& choose(int layout, const T& col, const T& row) { return layout == ColMajor ? col : row; } static internal::TensorBlockShapeType RandomShape() { return internal::random() ? internal::kUniformAllDims : internal::kSkewedInnerDims; } template static Index RandomTargetSize(const DSizes& dims) { return internal::random(1, dims.TotalSize()); } template static DSizes RandomDims() { array dims; for (int i = 0; i < NumDims; ++i) { dims[i] = internal::random(1, 20); } return DSizes(dims); } /** Dummy data type to test TensorBlock copy ops. */ struct Data { Data() : value(0) {} explicit Data(int v) : value(v) { } int value; }; bool operator==(const Data& lhs, const Data& rhs) { return lhs.value == rhs.value; } std::ostream& operator<<(std::ostream& os, const Data& d) { os << "Data: value=" << d.value; return os; } template static T* GenerateRandomData(const Index& size) { T* data = new T[size]; for (int i = 0; i < size; ++i) { data[i] = internal::random(); } return data; } template <> Data* GenerateRandomData(const Index& size) { Data* data = new Data[size]; for (int i = 0; i < size; ++i) { data[i] = Data(internal::random(1, 100)); } return data; } template static void Debug(DSizes dims) { for (int i = 0; i < NumDims; ++i) { std::cout << dims[i] << "; "; } std::cout << std::endl; } template static void test_block_mapper_sanity() { typedef internal::TensorBlockMapper TensorBlockMapper; DSizes tensor_dims(100, 100); // Test uniform blocks. TensorBlockMapper uniform_block_mapper( tensor_dims, internal::kUniformAllDims, 100); VERIFY_IS_EQUAL(uniform_block_mapper.total_block_count(), 100); VERIFY_IS_EQUAL(uniform_block_mapper.block_dims_total_size(), 100); // 10x10 blocks typename TensorBlockMapper::Block uniform_b0 = uniform_block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(uniform_b0.block_sizes().at(0), 10); VERIFY_IS_EQUAL(uniform_b0.block_sizes().at(1), 10); // Depending on a layout we stride by cols rows. VERIFY_IS_EQUAL(uniform_b0.block_strides().at(0), choose(Layout, 1, 10)); VERIFY_IS_EQUAL(uniform_b0.block_strides().at(1), choose(Layout, 10, 1)); // Tensor strides depend only on a layout and not on the block size. VERIFY_IS_EQUAL(uniform_b0.tensor_strides().at(0), choose(Layout, 1, 100)); VERIFY_IS_EQUAL(uniform_b0.tensor_strides().at(1), choose(Layout, 100, 1)); // Test skewed to inner dims blocks. TensorBlockMapper skewed_block_mapper( tensor_dims, internal::kSkewedInnerDims, 100); VERIFY_IS_EQUAL(skewed_block_mapper.total_block_count(), 100); VERIFY_IS_EQUAL(skewed_block_mapper.block_dims_total_size(), 100); // 1x100 (100x1) rows/cols depending on a tensor layout. typename TensorBlockMapper::Block skewed_b0 = skewed_block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(skewed_b0.block_sizes().at(0), choose(Layout, 100, 1)); VERIFY_IS_EQUAL(skewed_b0.block_sizes().at(1), choose(Layout, 1, 100)); // Depending on a layout we stride by cols rows. VERIFY_IS_EQUAL(skewed_b0.block_strides().at(0), choose(Layout, 1, 100)); VERIFY_IS_EQUAL(skewed_b0.block_strides().at(1), choose(Layout, 100, 1)); // Tensor strides depend only on a layout and not on the block size. VERIFY_IS_EQUAL(skewed_b0.tensor_strides().at(0), choose(Layout, 1, 100)); VERIFY_IS_EQUAL(skewed_b0.tensor_strides().at(1), choose(Layout, 100, 1)); } // Given a TensorBlock "visit" every element accessible though it, and a keep an // index in the visited set. Verify that every coeff accessed only once. template static void UpdateCoeffSet( const internal::TensorBlock& block, Index first_coeff_index, int dim_index, std::set* visited_coeffs) { const DSizes& block_sizes = block.block_sizes(); const DSizes& tensor_strides = block.tensor_strides(); for (int i = 0; i < block_sizes[dim_index]; ++i) { if (tensor_strides[dim_index] == 1) { typedef std::pair::iterator, bool> ReturnType; ReturnType inserted = visited_coeffs->insert(first_coeff_index + i); VERIFY_IS_EQUAL(inserted.second, true); } else { int next_dim_index = dim_index + choose(Layout, -1, 1); UpdateCoeffSet(block, first_coeff_index, next_dim_index, visited_coeffs); first_coeff_index += tensor_strides[dim_index]; } } } template static void test_block_mapper_maps_every_element() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockMapper TensorBlockMapper; DSizes dims = RandomDims(); // Keep track of elements indices available via block access. std::set coeff_set; // Try different combinations of block types and sizes. TensorBlockMapper block_mapper(dims, RandomShape(), RandomTargetSize(dims)); for (int i = 0; i < block_mapper.total_block_count(); ++i) { TensorBlock block = block_mapper.GetBlockForIndex(i, NULL); UpdateCoeffSet(block, block.first_coeff_index(), choose(Layout, NumDims - 1, 0), &coeff_set); } // Verify that every coefficient in the original Tensor is accessible through // TensorBlock only once. Index total_coeffs = dims.TotalSize(); VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs); VERIFY_IS_EQUAL(*coeff_set.begin(), 0); VERIFY_IS_EQUAL(*coeff_set.rbegin(), total_coeffs - 1); } template static void test_slice_block_mapper_maps_every_element() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorSliceBlockMapper TensorSliceBlockMapper; DSizes tensor_dims = RandomDims(); DSizes tensor_slice_offsets = RandomDims(); DSizes tensor_slice_extents = RandomDims(); // Make sure that tensor offsets + extents do not overflow. for (int i = 0; i < NumDims; ++i) { tensor_slice_offsets[i] = numext::mini(tensor_dims[i] - 1, tensor_slice_offsets[i]); tensor_slice_extents[i] = numext::mini( tensor_slice_extents[i], tensor_dims[i] - tensor_slice_offsets[i]); } // Keep track of elements indices available via block access. std::set coeff_set; int total_coeffs = static_cast(tensor_slice_extents.TotalSize()); // Pick a random dimension sizes for the tensor blocks. DSizes block_sizes; for (int i = 0; i < NumDims; ++i) { block_sizes[i] = internal::random(1, tensor_slice_extents[i]); } TensorSliceBlockMapper block_mapper(tensor_dims, tensor_slice_offsets, tensor_slice_extents, block_sizes, DimensionList()); for (int i = 0; i < block_mapper.total_block_count(); ++i) { TensorBlock block = block_mapper.GetBlockForIndex(i, NULL); UpdateCoeffSet(block, block.first_coeff_index(), choose(Layout, NumDims - 1, 0), &coeff_set); } VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs); } template static void test_block_io_copy_data_from_source_to_target() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockMapper TensorBlockMapper; typedef internal::TensorBlockReader TensorBlockReader; typedef internal::TensorBlockWriter TensorBlockWriter; DSizes input_tensor_dims = RandomDims(); const Index input_tensor_size = input_tensor_dims.TotalSize(); T* input_data = GenerateRandomData(input_tensor_size); T* output_data = new T[input_tensor_size]; TensorBlockMapper block_mapper(input_tensor_dims, RandomShape(), RandomTargetSize(input_tensor_dims)); T* block_data = new T[block_mapper.block_dims_total_size()]; for (int i = 0; i < block_mapper.total_block_count(); ++i) { TensorBlock block = block_mapper.GetBlockForIndex(i, block_data); TensorBlockReader::Run(&block, input_data); TensorBlockWriter::Run(block, output_data); } for (int i = 0; i < input_tensor_size; ++i) { VERIFY_IS_EQUAL(input_data[i], output_data[i]); } delete[] input_data; delete[] output_data; delete[] block_data; } template static Index GetInputIndex(Index output_index, const array& output_to_input_dim_map, const array& input_strides, const array& output_strides) { int input_index = 0; if (Layout == ColMajor) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = output_index / output_strides[i]; input_index += idx * input_strides[output_to_input_dim_map[i]]; output_index -= idx * output_strides[i]; } return input_index + output_index * input_strides[output_to_input_dim_map[0]]; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = output_index / output_strides[i]; input_index += idx * input_strides[output_to_input_dim_map[i]]; output_index -= idx * output_strides[i]; } return input_index + output_index * input_strides[output_to_input_dim_map[NumDims - 1]]; } } template static array ComputeStrides( const array& sizes) { array strides; if (Layout == ColMajor) { strides[0] = 1; for (int i = 1; i < NumDims; ++i) { strides[i] = strides[i - 1] * sizes[i - 1]; } } else { strides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { strides[i] = strides[i + 1] * sizes[i + 1]; } } return strides; } template static void test_block_io_copy_using_reordered_dimensions() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockMapper TensorBlockMapper; typedef internal::TensorBlockReader TensorBlockReader; typedef internal::TensorBlockWriter TensorBlockWriter; DSizes input_tensor_dims = RandomDims(); const Index input_tensor_size = input_tensor_dims.TotalSize(); // Create a random input tensor. T* input_data = GenerateRandomData(input_tensor_size); // Create a random dimension re-ordering/shuffle. std::vector shuffle; for (int i = 0; i < NumDims; ++i) shuffle.push_back(i); std::random_shuffle(shuffle.begin(), shuffle.end()); DSizes output_tensor_dims; array input_to_output_dim_map; array output_to_input_dim_map; for (Index i = 0; i < NumDims; ++i) { output_tensor_dims[shuffle[i]] = input_tensor_dims[i]; input_to_output_dim_map[i] = shuffle[i]; output_to_input_dim_map[shuffle[i]] = i; } // Random block shape and size. TensorBlockMapper block_mapper(output_tensor_dims, RandomShape(), RandomTargetSize(input_tensor_dims)); T* block_data = new T[block_mapper.block_dims_total_size()]; T* output_data = new T[input_tensor_size]; array input_tensor_strides = ComputeStrides(input_tensor_dims); array output_tensor_strides = ComputeStrides(output_tensor_dims); for (Index i = 0; i < block_mapper.total_block_count(); ++i) { TensorBlock block = block_mapper.GetBlockForIndex(i, block_data); const Index first_coeff_index = GetInputIndex( block.first_coeff_index(), output_to_input_dim_map, input_tensor_strides, output_tensor_strides); TensorBlockReader::Run(&block, first_coeff_index, input_to_output_dim_map, input_tensor_strides, input_data); TensorBlockWriter::Run(block, first_coeff_index, input_to_output_dim_map, input_tensor_strides, output_data); } for (int i = 0; i < input_tensor_size; ++i) { VERIFY_IS_EQUAL(input_data[i], output_data[i]); } delete[] input_data; delete[] block_data; delete[] output_data; } template class EqualityChecker { const Scalar* input_data; const DSizes &input_dims, &input_strides, &output_dims, &output_strides; void check_recursive(const Scalar* input, const Scalar* output, int depth=0) const { if(depth==Dim) { VERIFY_IS_EQUAL(*input, *output); return; } for(int i=0; i &input_dims_, const DSizes &input_strides_, const DSizes &output_dims_, const DSizes &output_strides_) : input_data(input_data_) , input_dims(input_dims_), input_strides(input_strides_) , output_dims(output_dims_), output_strides(output_strides_) {} void operator()(const Scalar* output_data) const { check_recursive(input_data, output_data); } }; template static void test_block_io_zero_stride() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockReader TensorBlockReader; typedef internal::TensorBlockWriter TensorBlockWriter; DSizes rnd_dims = RandomDims<5>(); DSizes input_tensor_dims = rnd_dims; input_tensor_dims[0] = 1; input_tensor_dims[2] = 1; input_tensor_dims[4] = 1; const Index input_tensor_size = input_tensor_dims.TotalSize(); float* input_data = GenerateRandomData(input_tensor_size); DSizes output_tensor_dims = rnd_dims; DSizes input_tensor_strides( ComputeStrides(input_tensor_dims)); DSizes output_tensor_strides( ComputeStrides(output_tensor_dims)); DSizes input_tensor_strides_with_zeros(input_tensor_strides); input_tensor_strides_with_zeros[0] = 0; input_tensor_strides_with_zeros[2] = 0; input_tensor_strides_with_zeros[4] = 0; // Verify that data was correctly read/written from/into the block. const EqualityChecker verify_is_equal(input_data, input_tensor_dims, input_tensor_strides, output_tensor_dims, output_tensor_strides); { float* output_data = new float[output_tensor_dims.TotalSize()]; TensorBlock read_block(0, output_tensor_dims, output_tensor_strides, input_tensor_strides_with_zeros, output_data); TensorBlockReader::Run(&read_block, input_data); verify_is_equal(output_data); delete[] output_data; } { float* output_data = new float[output_tensor_dims.TotalSize()]; TensorBlock write_block(0, output_tensor_dims, input_tensor_strides_with_zeros, output_tensor_strides, input_data); TensorBlockWriter::Run(write_block, output_data); verify_is_equal(output_data); delete[] output_data; } delete[] input_data; } template static void test_block_io_squeeze_ones() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockReader TensorBlockReader; typedef internal::TensorBlockWriter TensorBlockWriter; // Total size > 1. { DSizes block_sizes(1, 2, 1, 2, 1); const Index total_size = block_sizes.TotalSize(); // Create a random input tensor. float* input_data = GenerateRandomData(total_size); DSizes strides(ComputeStrides(block_sizes)); { float* output_data = new float[block_sizes.TotalSize()]; TensorBlock read_block(0, block_sizes, strides, strides, output_data); TensorBlockReader::Run(&read_block, input_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], input_data[i]); } delete[] output_data; } { float* output_data = new float[block_sizes.TotalSize()]; TensorBlock write_block(0, block_sizes, strides, strides, input_data); TensorBlockWriter::Run(write_block, output_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], input_data[i]); } delete[] output_data; } } // Total size == 1. { DSizes block_sizes(1, 1, 1, 1, 1); const Index total_size = block_sizes.TotalSize(); // Create a random input tensor. float* input_data = GenerateRandomData(total_size); DSizes strides(ComputeStrides(block_sizes)); { float* output_data = new float[block_sizes.TotalSize()]; TensorBlock read_block(0, block_sizes, strides, strides, output_data); TensorBlockReader::Run(&read_block, input_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], input_data[i]); } delete[] output_data; } { float* output_data = new float[block_sizes.TotalSize()]; TensorBlock write_block(0, block_sizes, strides, strides, input_data); TensorBlockWriter::Run(write_block, output_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], input_data[i]); } delete[] output_data; } } } template static void test_block_cwise_unary_io_basic() { typedef internal::scalar_square_op UnaryFunctor; typedef internal::TensorBlockCwiseUnaryIO TensorBlockCwiseUnaryIO; DSizes block_sizes = RandomDims(); DSizes strides(ComputeStrides(block_sizes)); const Index total_size = block_sizes.TotalSize(); // Create a random input tensors. T* input_data = GenerateRandomData(total_size); T* output_data = new T[total_size]; UnaryFunctor functor; TensorBlockCwiseUnaryIO::Run(functor, block_sizes, strides, output_data, strides, input_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], functor(input_data[i])); } delete[] input_data; delete[] output_data; } template static void test_block_cwise_unary_io_squeeze_ones() { typedef internal::scalar_square_op UnaryFunctor; typedef internal::TensorBlockCwiseUnaryIO TensorBlockCwiseUnaryIO; DSizes block_sizes(1, 2, 1, 3, 1); DSizes strides(ComputeStrides(block_sizes)); const Index total_size = block_sizes.TotalSize(); // Create a random input tensors. float* input_data = GenerateRandomData(total_size); float* output_data = new float[total_size]; UnaryFunctor functor; TensorBlockCwiseUnaryIO::Run(functor, block_sizes, strides, output_data, strides, input_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], functor(input_data[i])); } delete[] input_data; delete[] output_data; } template static void test_block_cwise_unary_io_zero_strides() { typedef internal::scalar_square_op UnaryFunctor; typedef internal::TensorBlockCwiseUnaryIO TensorBlockCwiseUnaryIO; DSizes rnd_dims = RandomDims<5>(); DSizes input_sizes = rnd_dims; input_sizes[0] = 1; input_sizes[2] = 1; input_sizes[4] = 1; DSizes input_strides(ComputeStrides(input_sizes)); input_strides[0] = 0; input_strides[2] = 0; input_strides[4] = 0; // Generate random data. float* input_data = GenerateRandomData(input_sizes.TotalSize()); DSizes output_sizes = rnd_dims; DSizes output_strides(ComputeStrides(output_sizes)); const Index output_total_size = output_sizes.TotalSize(); float* output_data = new float[output_total_size]; UnaryFunctor functor; TensorBlockCwiseUnaryIO::Run(functor, output_sizes, output_strides, output_data, input_strides, input_data); for (int i = 0; i < rnd_dims[0]; ++i) { for (int j = 0; j < rnd_dims[1]; ++j) { for (int k = 0; k < rnd_dims[2]; ++k) { for (int l = 0; l < rnd_dims[3]; ++l) { for (int m = 0; m < rnd_dims[4]; ++m) { Index output_index = i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4]; Index input_index = i * input_strides[0] + j * input_strides[1] + k * input_strides[2] + l * input_strides[3] + m * input_strides[4]; VERIFY_IS_EQUAL(output_data[output_index], functor(input_data[input_index])); } } } } } delete[] input_data; delete[] output_data; } template static void test_block_cwise_binary_io_basic() { typedef internal::scalar_sum_op BinaryFunctor; typedef internal::TensorBlockCwiseBinaryIO TensorBlockCwiseBinaryIO; DSizes block_sizes = RandomDims(); DSizes strides(ComputeStrides(block_sizes)); const Index total_size = block_sizes.TotalSize(); // Create a random input tensors. T* left_data = GenerateRandomData(total_size); T* right_data = GenerateRandomData(total_size); T* output_data = new T[total_size]; BinaryFunctor functor; TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data, strides, left_data, strides, right_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], functor(left_data[i], right_data[i])); } delete[] left_data; delete[] right_data; delete[] output_data; } template static void test_block_cwise_binary_io_squeeze_ones() { typedef internal::scalar_sum_op BinaryFunctor; typedef internal::TensorBlockCwiseBinaryIO TensorBlockCwiseBinaryIO; DSizes block_sizes(1, 2, 1, 3, 1); DSizes strides(ComputeStrides(block_sizes)); const Index total_size = block_sizes.TotalSize(); // Create a random input tensors. float* left_data = GenerateRandomData(total_size); float* right_data = GenerateRandomData(total_size); float* output_data = new float[total_size]; BinaryFunctor functor; TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data, strides, left_data, strides, right_data); for (int i = 0; i < total_size; ++i) { VERIFY_IS_EQUAL(output_data[i], functor(left_data[i], right_data[i])); } delete[] left_data; delete[] right_data; delete[] output_data; } template static void test_block_cwise_binary_io_zero_strides() { typedef internal::scalar_sum_op BinaryFunctor; typedef internal::TensorBlockCwiseBinaryIO TensorBlockCwiseBinaryIO; DSizes rnd_dims = RandomDims<5>(); DSizes left_sizes = rnd_dims; left_sizes[0] = 1; left_sizes[2] = 1; left_sizes[4] = 1; DSizes left_strides(ComputeStrides(left_sizes)); left_strides[0] = 0; left_strides[2] = 0; left_strides[4] = 0; DSizes right_sizes = rnd_dims; right_sizes[1] = 0; right_sizes[3] = 0; DSizes right_strides(ComputeStrides(right_sizes)); right_strides[1] = 0; right_strides[3] = 0; // Generate random data. float* left_data = GenerateRandomData(left_sizes.TotalSize()); float* right_data = GenerateRandomData(right_sizes.TotalSize()); DSizes output_sizes = rnd_dims; DSizes output_strides(ComputeStrides(output_sizes)); const Index output_total_size = output_sizes.TotalSize(); float* output_data = new float[output_total_size]; BinaryFunctor functor; TensorBlockCwiseBinaryIO::Run(functor, output_sizes, output_strides, output_data, left_strides, left_data, right_strides, right_data); for (int i = 0; i < rnd_dims[0]; ++i) { for (int j = 0; j < rnd_dims[1]; ++j) { for (int k = 0; k < rnd_dims[2]; ++k) { for (int l = 0; l < rnd_dims[3]; ++l) { for (int m = 0; m < rnd_dims[4]; ++m) { Index output_index = i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4]; Index left_index = i * left_strides[0] + j * left_strides[1] + k * left_strides[2] + l * left_strides[3] + m * left_strides[4]; Index right_index = i * right_strides[0] + j * right_strides[1] + k * right_strides[2] + l * right_strides[3] + m * right_strides[4]; VERIFY_IS_EQUAL( output_data[output_index], functor(left_data[left_index], right_data[right_index])); } } } } } delete[] left_data; delete[] right_data; delete[] output_data; } template static void test_uniform_block_shape() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockMapper TensorBlockMapper; { // Test shape 'UniformAllDims' with uniform 'max_coeff count'. DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 5 * 5 * 5 * 5 * 5; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); for (int i = 0; i < 5; ++i) { VERIFY_IS_EQUAL(5, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills // partially into first inner-most dimension. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 7 * 5 * 5 * 5 * 5; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(5, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 5 * 5 * 5 * 5 * 6; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(6, block.block_sizes()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(5, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills // fully into first inner-most dimension. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 5 * 5 * 5; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(11, block.block_sizes()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(5, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 5 * 5 * 5 * 5 * 7; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(5, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills // fully into first few inner-most dimensions. if (Layout == ColMajor) { DSizes dims(7, 5, 6, 17, 7); const Index max_coeff_count = 7 * 5 * 6 * 7 * 5; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[0]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(6, block.block_sizes()[2]); VERIFY_IS_EQUAL(7, block.block_sizes()[3]); VERIFY_IS_EQUAL(5, block.block_sizes()[4]); VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(7, 5, 6, 9, 7); const Index max_coeff_count = 5 * 5 * 5 * 6 * 7; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY_IS_EQUAL(6, block.block_sizes()[3]); VERIFY_IS_EQUAL(5, block.block_sizes()[2]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(5, block.block_sizes()[0]); VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with full allocation to all dims. if (Layout == ColMajor) { DSizes dims(7, 5, 6, 17, 7); const Index max_coeff_count = 7 * 5 * 6 * 17 * 7; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[0]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(6, block.block_sizes()[2]); VERIFY_IS_EQUAL(17, block.block_sizes()[3]); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(7, 5, 6, 9, 7); const Index max_coeff_count = 7 * 5 * 6 * 9 * 7; TensorBlockMapper block_mapper(dims, internal::kUniformAllDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY_IS_EQUAL(9, block.block_sizes()[3]); VERIFY_IS_EQUAL(6, block.block_sizes()[2]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(7, block.block_sizes()[0]); VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } } template static void test_skewed_inner_dim_block_shape() { typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockMapper TensorBlockMapper; // Test shape 'SkewedInnerDims' with partial allocation to inner-most dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 10 * 1 * 1 * 1 * 1; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(10, block.block_sizes()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 1 * 1 * 6; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(6, block.block_sizes()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to inner-most dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 1 * 1 * 1 * 1; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(11, block.block_sizes()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 1 * 1 * 7; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to inner-most dim, // and partial allocation to second inner-dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 3 * 1 * 1 * 1; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(11, block.block_sizes()[0]); VERIFY_IS_EQUAL(3, block.block_sizes()[1]); for (int i = 2; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 1 * 15 * 7; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY_IS_EQUAL(15, block.block_sizes()[3]); for (int i = 2; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to inner-most dim, // and partial allocation to third inner-dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 5 * 1 * 1; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(11, block.block_sizes()[0]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(5, block.block_sizes()[2]); for (int i = 3; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 5 * 17 * 7; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY_IS_EQUAL(17, block.block_sizes()[3]); VERIFY_IS_EQUAL(5, block.block_sizes()[2]); for (int i = 1; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.block_sizes()[i]); } VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to all dims. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 6 * 17 * 7; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(11, block.block_sizes()[0]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(6, block.block_sizes()[2]); VERIFY_IS_EQUAL(17, block.block_sizes()[3]); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 6 * 17 * 7; TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims, max_coeff_count); TensorBlock block = block_mapper.GetBlockForIndex(0, NULL); VERIFY_IS_EQUAL(7, block.block_sizes()[4]); VERIFY_IS_EQUAL(17, block.block_sizes()[3]); VERIFY_IS_EQUAL(6, block.block_sizes()[2]); VERIFY_IS_EQUAL(5, block.block_sizes()[1]); VERIFY_IS_EQUAL(11, block.block_sizes()[0]); VERIFY(block.block_sizes().TotalSize() <= max_coeff_count); } } template static void test_empty_dims(const internal::TensorBlockShapeType block_shape) { // Test blocking of tensors with zero dimensions: // - we must not crash on asserts and divisions by zero // - we must not return block with zero dimensions // (recipe for overflows/underflows, divisions by zero and NaNs later) // - total block count must be zero { typedef internal::TensorBlockMapper TensorBlockMapper; DSizes dims(0); for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) { TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count); VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0); VERIFY(block_mapper.block_dims_total_size() >= 1); } } { typedef internal::TensorBlockMapper TensorBlockMapper; for (int dim1 = 0; dim1 < 3; ++dim1) { for (int dim2 = 0; dim2 < 3; ++dim2) { DSizes dims(dim1, dim2); for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) { TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count); if (dim1 * dim2 == 0) { VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0); } VERIFY(block_mapper.block_dims_total_size() >= 1); } } } } } #define TEST_LAYOUTS(NAME) \ CALL_SUBTEST(NAME()); \ CALL_SUBTEST(NAME()) #define TEST_LAYOUTS_AND_DIMS(TYPE, NAME) \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())) #define TEST_LAYOUTS_WITH_ARG(NAME, ARG) \ CALL_SUBTEST(NAME(ARG)); \ CALL_SUBTEST(NAME(ARG)) EIGEN_DECLARE_TEST(cxx11_tensor_block_access) { TEST_LAYOUTS(test_block_mapper_sanity); TEST_LAYOUTS_AND_DIMS(float, test_block_mapper_maps_every_element); TEST_LAYOUTS_AND_DIMS(float, test_slice_block_mapper_maps_every_element); TEST_LAYOUTS_AND_DIMS(float, test_block_io_copy_data_from_source_to_target); TEST_LAYOUTS_AND_DIMS(Data, test_block_io_copy_data_from_source_to_target); TEST_LAYOUTS_AND_DIMS(float, test_block_io_copy_using_reordered_dimensions); TEST_LAYOUTS_AND_DIMS(Data, test_block_io_copy_using_reordered_dimensions); TEST_LAYOUTS(test_block_io_zero_stride); TEST_LAYOUTS(test_block_io_squeeze_ones); TEST_LAYOUTS_AND_DIMS(float, test_block_cwise_unary_io_basic); TEST_LAYOUTS(test_block_cwise_unary_io_squeeze_ones); TEST_LAYOUTS(test_block_cwise_unary_io_zero_strides); TEST_LAYOUTS_AND_DIMS(float, test_block_cwise_binary_io_basic); TEST_LAYOUTS(test_block_cwise_binary_io_squeeze_ones); TEST_LAYOUTS(test_block_cwise_binary_io_zero_strides); TEST_LAYOUTS(test_uniform_block_shape); TEST_LAYOUTS(test_skewed_inner_dim_block_shape); TEST_LAYOUTS_WITH_ARG(test_empty_dims, internal::kUniformAllDims); TEST_LAYOUTS_WITH_ARG(test_empty_dims, internal::kSkewedInnerDims); } #undef TEST_LAYOUTS #undef TEST_LAYOUTS_WITH_ARG