// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" using namespace std; template void diagonalmatrices(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef Matrix VectorType; typedef Matrix RowVectorType; typedef Matrix SquareMatrixType; typedef Matrix DynMatrixType; typedef DiagonalMatrix LeftDiagonalMatrix; typedef DiagonalMatrix RightDiagonalMatrix; typedef Matrix BigMatrix; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols), rv2 = RowVectorType::Random(cols); LeftDiagonalMatrix ldm1(v1), ldm2(v2); RightDiagonalMatrix rdm1(rv1), rdm2(rv2); Scalar s1 = internal::random(); SquareMatrixType sq_m1 (v1.asDiagonal()); VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); sq_m1 = v1.asDiagonal(); VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); SquareMatrixType sq_m2 = v1.asDiagonal(); VERIFY_IS_APPROX(sq_m1, sq_m2); ldm1 = v1.asDiagonal(); LeftDiagonalMatrix ldm3(v1); VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal()); LeftDiagonalMatrix ldm4 = v1.asDiagonal(); VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal()); sq_m1.block(0,0,rows,rows) = ldm1; VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix()); sq_m1.transpose() = ldm1; VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix()); Index i = internal::random(0, rows-1); Index j = internal::random(0, cols-1); VERIFY_IS_APPROX( ((ldm1 * m1)(i,j)) , ldm1.diagonal()(i) * m1(i,j) ); VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j)) , ldm1.diagonal()(i) * (m1+m2)(i,j) ); VERIFY_IS_APPROX( ((m1 * rdm1)(i,j)) , rdm1.diagonal()(j) * m1(i,j) ); VERIFY_IS_APPROX( ((v1.asDiagonal() * m1)(i,j)) , v1(i) * m1(i,j) ); VERIFY_IS_APPROX( ((m1 * rv1.asDiagonal())(i,j)) , rv1(j) * m1(i,j) ); VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * m1)(i,j)) , (v1+v2)(i) * m1(i,j) ); VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * (m1+m2))(i,j)) , (v1+v2)(i) * (m1+m2)(i,j) ); VERIFY_IS_APPROX( ((m1 * (rv1+rv2).asDiagonal())(i,j)) , (rv1+rv2)(j) * m1(i,j) ); VERIFY_IS_APPROX( (((m1+m2) * (rv1+rv2).asDiagonal())(i,j)) , (rv1+rv2)(j) * (m1+m2)(i,j) ); if(rows>1) { DynMatrixType tmp = m1.topRows(rows/2), res; VERIFY_IS_APPROX( (res = m1.topRows(rows/2) * rv1.asDiagonal()), tmp * rv1.asDiagonal() ); VERIFY_IS_APPROX( (res = v1.head(rows/2).asDiagonal()*m1.topRows(rows/2)), v1.head(rows/2).asDiagonal()*tmp ); } BigMatrix big; big.setZero(2*rows, 2*cols); big.block(i,j,rows,cols) = m1; big.block(i,j,rows,cols) = v1.asDiagonal() * big.block(i,j,rows,cols); VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , v1.asDiagonal() * m1 ); big.block(i,j,rows,cols) = m1; big.block(i,j,rows,cols) = big.block(i,j,rows,cols) * rv1.asDiagonal(); VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , m1 * rv1.asDiagonal() ); // scalar multiple VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1*s1).diagonal(), ldm1.diagonal() * s1); VERIFY_IS_APPROX(LeftDiagonalMatrix(s1*ldm1).diagonal(), s1 * ldm1.diagonal()); VERIFY_IS_APPROX(m1 * (rdm1 * s1), (m1 * rdm1) * s1); VERIFY_IS_APPROX(m1 * (s1 * rdm1), (m1 * rdm1) * s1); // Diagonal to dense sq_m1.setRandom(); sq_m2 = sq_m1; VERIFY_IS_APPROX( (sq_m1 += (s1*v1).asDiagonal()), sq_m2 += (s1*v1).asDiagonal().toDenseMatrix() ); VERIFY_IS_APPROX( (sq_m1 -= (s1*v1).asDiagonal()), sq_m2 -= (s1*v1).asDiagonal().toDenseMatrix() ); VERIFY_IS_APPROX( (sq_m1 = (s1*v1).asDiagonal()), (s1*v1).asDiagonal().toDenseMatrix() ); sq_m1.setRandom(); sq_m2 = v1.asDiagonal(); sq_m2 = sq_m1 * sq_m2; VERIFY_IS_APPROX( (sq_m1*v1.asDiagonal()).col(i), sq_m2.col(i) ); VERIFY_IS_APPROX( (sq_m1*v1.asDiagonal()).row(i), sq_m2.row(i) ); if(v1.size()==1) { typedef Matrix DynVectorType; typedef Matrix DynRowVectorType; Index depth = internal::random(1,EIGEN_TEST_MAX_SIZE); DynVectorType dv1 = DynVectorType::Random(depth); DynRowVectorType drv1 = DynRowVectorType::Random(depth); DynMatrixType dm1 = dv1; DynMatrixType drm1 = drv1; Scalar s = v1(0); VERIFY_IS_APPROX( v1.asDiagonal() * drv1, s*drv1 ); VERIFY_IS_APPROX( dv1 * v1.asDiagonal(), dv1*s ); VERIFY_IS_APPROX( v1.asDiagonal() * drm1, s*drm1 ); VERIFY_IS_APPROX( dm1 * v1.asDiagonal(), dm1*s ); } } template void bug987() { Matrix3Xd points = Matrix3Xd::Random(3, 3); Vector2d diag = Vector2d::Random(); Matrix2Xd tmp1 = points.topRows<2>(), res1, res2; VERIFY_IS_APPROX( res1 = diag.asDiagonal() * points.topRows<2>(), res2 = diag.asDiagonal() * tmp1 ); Matrix2d tmp2 = points.topLeftCorner<2,2>(); VERIFY_IS_APPROX(( res1 = points.topLeftCorner<2,2>()*diag.asDiagonal()) , res2 = tmp2*diag.asDiagonal() ); } void test_diagonalmatrices() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( diagonalmatrices(Matrix()) ); CALL_SUBTEST_2( diagonalmatrices(Matrix3f()) ); CALL_SUBTEST_3( diagonalmatrices(Matrix()) ); CALL_SUBTEST_4( diagonalmatrices(Matrix4d()) ); CALL_SUBTEST_5( diagonalmatrices(Matrix()) ); CALL_SUBTEST_6( diagonalmatrices(MatrixXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_7( diagonalmatrices(MatrixXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_8( diagonalmatrices(Matrix(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_9( diagonalmatrices(MatrixXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_9( diagonalmatrices(MatrixXf(1,1)) ); } CALL_SUBTEST_10( bug987<0>() ); }