// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void matrixRedux(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy Scalar s(0), p(1), minc(ei_real(m1.coeff(0))), maxc(ei_real(m1.coeff(0))); for(int j = 0; j < cols; j++) for(int i = 0; i < rows; i++) { s += m1(i,j); p *= m1(i,j); minc = std::min(ei_real(minc), ei_real(m1(i,j))); maxc = std::max(ei_real(maxc), ei_real(m1(i,j))); } const Scalar mean = s/Scalar(RealScalar(rows*cols)); VERIFY_IS_APPROX(m1.sum(), s); VERIFY_IS_APPROX(m1.mean(), mean); VERIFY_IS_APPROX(m1.prod(), p); VERIFY_IS_APPROX(m1.real().minCoeff(), ei_real(minc)); VERIFY_IS_APPROX(m1.real().maxCoeff(), ei_real(maxc)); // test sclice vectorization assuming assign is ok int r0 = ei_random(0,rows-1); int c0 = ei_random(0,cols-1); int r1 = ei_random(r0+1,rows)-r0; int c1 = ei_random(c0+1,cols)-c0; VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).prod(), m1.block(r0,c0,r1,c1).eval().prod()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); } template void vectorRedux(const VectorType& w) { typedef typename VectorType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; int size = w.size(); VectorType v = VectorType::Random(size); for(int i = 1; i < size; i++) { Scalar s(0), p(1); RealScalar minc(ei_real(v.coeff(0))), maxc(ei_real(v.coeff(0))); for(int j = 0; j < i; j++) { s += v[j]; p *= v[j]; minc = std::min(minc, ei_real(v[j])); maxc = std::max(maxc, ei_real(v[j])); } VERIFY_IS_APPROX(s, v.head(i).sum()); VERIFY_IS_APPROX(p, v.head(i).prod()); VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); } for(int i = 0; i < size-1; i++) { Scalar s(0), p(1); RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i))); for(int j = i; j < size; j++) { s += v[j]; p *= v[j]; minc = std::min(minc, ei_real(v[j])); maxc = std::max(maxc, ei_real(v[j])); } VERIFY_IS_APPROX(s, v.tail(size-i).sum()); VERIFY_IS_APPROX(p, v.tail(size-i).prod()); VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); } for(int i = 0; i < size/2; i++) { Scalar s(0), p(1); RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i))); for(int j = i; j < size-i; j++) { s += v[j]; p *= v[j]; minc = std::min(minc, ei_real(v[j])); maxc = std::max(maxc, ei_real(v[j])); } VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum()); VERIFY_IS_APPROX(p, v.segment(i, size-2*i).prod()); VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); } } void test_redux() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( matrixRedux(Matrix()) ); CALL_SUBTEST_1( matrixRedux(Array()) ); CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); CALL_SUBTEST_2( matrixRedux(Array2f()) ); CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); CALL_SUBTEST_3( matrixRedux(Array4d()) ); CALL_SUBTEST_4( matrixRedux(MatrixXcf(3, 3)) ); CALL_SUBTEST_4( matrixRedux(ArrayXXcf(3, 3)) ); CALL_SUBTEST_5( matrixRedux(MatrixXd(8, 12)) ); CALL_SUBTEST_5( matrixRedux(ArrayXXd(8, 12)) ); CALL_SUBTEST_6( matrixRedux(MatrixXi(8, 12)) ); CALL_SUBTEST_6( matrixRedux(ArrayXXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_7( vectorRedux(Vector4f()) ); CALL_SUBTEST_7( vectorRedux(Array4f()) ); CALL_SUBTEST_5( vectorRedux(VectorXd(10)) ); CALL_SUBTEST_5( vectorRedux(ArrayXd(10)) ); CALL_SUBTEST_8( vectorRedux(VectorXf(33)) ); CALL_SUBTEST_8( vectorRedux(ArrayXf(33)) ); } }