// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_NO_ASSERTION_CHECKING #define EIGEN_NO_ASSERTION_CHECKING #endif static int nb_temporaries; #define EIGEN_DEBUG_MATRIX_CTOR { if(size!=0) nb_temporaries++; } #include "main.h" #include #include #define VERIFY_EVALUATION_COUNT(XPR,N) {\ nb_temporaries = 0; \ XPR; \ if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY( (#XPR) && nb_temporaries==N ); \ } #ifdef HAS_GSL #include "gsl_helper.h" #endif template void cholesky(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files: LLT.h LDLT.h */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix SquareMatrixType; typedef Matrix VectorType; MatrixType a0 = MatrixType::Random(rows,cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); SquareMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular for (int k=0; k<3; ++k) { MatrixType a1 = MatrixType::Random(rows,cols); symm += a1 * a1.adjoint(); } SquareMatrixType symmUp = symm.template triangularView(); SquareMatrixType symmLo = symm.template triangularView(); // to test if really Cholesky only uses the upper triangular part, uncomment the following // FIXME: currently that fails !! //symm.template part().setZero(); #ifdef HAS_GSL // if (ei_is_same_type::ret) // { // typedef GslTraits Gsl; // typename Gsl::Matrix gMatA=0, gSymm=0; // typename Gsl::Vector gVecB=0, gVecX=0; // convert(symm, gSymm); // convert(symm, gMatA); // convert(vecB, gVecB); // convert(vecB, gVecX); // Gsl::cholesky(gMatA); // Gsl::cholesky_solve(gMatA, gVecB, gVecX); // VectorType vecX(rows), _vecX, _vecB; // convert(gVecX, _vecX); // symm.llt().solve(vecB, &vecX); // Gsl::prod(gSymm, gVecX, gVecB); // convert(gVecB, _vecB); // // test gsl itself ! // VERIFY_IS_APPROX(vecB, _vecB); // VERIFY_IS_APPROX(vecX, _vecX); // // Gsl::free(gMatA); // Gsl::free(gSymm); // Gsl::free(gVecB); // Gsl::free(gVecX); // } #endif { LLT chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); vecX = chollo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = chollo.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); // test the upper mode LLT cholup(symmUp); VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); vecX = cholup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = cholup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); MatrixType neg = -symmLo; chollo.compute(neg); VERIFY(chollo.info()==NumericalIssue); } // LDLT { int sign = ei_random()%2 ? 1 : -1; if(sign == -1) { symm = -symm; // test a negative matrix } SquareMatrixType symmUp = symm.template triangularView(); SquareMatrixType symmLo = symm.template triangularView(); LDLT ldltlo(symmLo); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltlo.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); LDLT ldltup(symmUp); VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); vecX = ldltup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); if(MatrixType::RowsAtCompileTime==Dynamic) { // note : each inplace permutation requires a small temporary vector (mask) // check inplace solve matX = matB; VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0); VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval()); matX = matB; VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0); VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval()); } } } template void cholesky_cplx(const MatrixType& m) { // classic test cholesky(m); // test mixing real/scalar types typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix RealMatrixType; typedef Matrix VectorType; RealMatrixType a0 = RealMatrixType::Random(rows,cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); RealMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular for (int k=0; k<3; ++k) { RealMatrixType a1 = RealMatrixType::Random(rows,cols); symm += a1 * a1.adjoint(); } { RealMatrixType symmLo = symm.template triangularView(); LLT chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); vecX = chollo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); // matX = chollo.solve(matB); // VERIFY_IS_APPROX(symm * matX, matB); } // LDLT { int sign = ei_random()%2 ? 1 : -1; if(sign == -1) { symm = -symm; // test a negative matrix } RealMatrixType symmLo = symm.template triangularView(); LDLT ldltlo(symmLo); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); // matX = ldltlo.solve(matB); // VERIFY_IS_APPROX(symm * matX, matB); } } template void cholesky_verify_assert() { MatrixType tmp; LLT llt; VERIFY_RAISES_ASSERT(llt.matrixL()) VERIFY_RAISES_ASSERT(llt.matrixU()) VERIFY_RAISES_ASSERT(llt.solve(tmp)) VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp)) LDLT ldlt; VERIFY_RAISES_ASSERT(ldlt.matrixL()) VERIFY_RAISES_ASSERT(ldlt.permutationP()) VERIFY_RAISES_ASSERT(ldlt.vectorD()) VERIFY_RAISES_ASSERT(ldlt.isPositive()) VERIFY_RAISES_ASSERT(ldlt.isNegative()) VERIFY_RAISES_ASSERT(ldlt.solve(tmp)) VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp)) } void test_cholesky() { int s; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( cholesky(Matrix()) ); CALL_SUBTEST_3( cholesky(Matrix2d()) ); CALL_SUBTEST_4( cholesky(Matrix3f()) ); CALL_SUBTEST_5( cholesky(Matrix4d()) ); s = ei_random(1,200); CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) ); s = ei_random(1,100); CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) ); } CALL_SUBTEST_4( cholesky_verify_assert() ); CALL_SUBTEST_7( cholesky_verify_assert() ); CALL_SUBTEST_8( cholesky_verify_assert() ); CALL_SUBTEST_2( cholesky_verify_assert() ); // Test problem size constructors CALL_SUBTEST_9( LLT(10) ); CALL_SUBTEST_9( LDLT(10) ); }