// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_broadcast_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device){ // BROADCAST test: array in_range = {{2, 3, 5, 7}}; array broadcasts = {{2, 3, 1, 4}}; array out_range; // = in_range * broadcasts for (size_t i = 0; i < out_range.size(); ++i) out_range[i] = in_range[i] * broadcasts[i]; Tensor input(in_range); Tensor out(out_range); for (size_t i = 0; i < in_range.size(); ++i) VERIFY_IS_EQUAL(out.dimension(i), out_range[i]); for (int i = 0; i < input.size(); ++i) input(i) = static_cast(i); float * gpu_in_data = static_cast(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(float))); float * gpu_out_data = static_cast(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float))); TensorMap>> gpu_in(gpu_in_data, in_range); TensorMap> gpu_out(gpu_out_data, out_range); sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(float)); gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 9; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 28; ++l) { VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l)); } } } } printf("Broadcast Test with fixed size Passed\n"); sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){ // BROADCAST test: array in_range = {{2, 3, 5, 7}}; array broadcasts = {{2, 3, 1, 4}}; array out_range; // = in_range * broadcasts for (size_t i = 0; i < out_range.size(); ++i) out_range[i] = in_range[i] * broadcasts[i]; Tensor input(in_range); Tensor out(out_range); for (size_t i = 0; i < in_range.size(); ++i) VERIFY_IS_EQUAL(out.dimension(i), out_range[i]); for (int i = 0; i < input.size(); ++i) input(i) = static_cast(i); float * gpu_in_data = static_cast(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(float))); float * gpu_out_data = static_cast(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float))); TensorMap> gpu_in(gpu_in_data, in_range); TensorMap> gpu_out(gpu_out_data, out_range); sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(float)); gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 9; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 28; ++l) { VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l)); } } } } printf("Broadcast Test Passed\n"); sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } void test_cxx11_tensor_broadcast_sycl() { cl::sycl::gpu_selector s; Eigen::SyclDevice sycl_device(s); CALL_SUBTEST(test_broadcast_sycl_fixed(sycl_device)); CALL_SUBTEST(test_broadcast_sycl(sycl_device)); }