// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2007 Benoit Jacob // // Eigen is free software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the Free Software // Foundation; either version 2 or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more // details. // // You should have received a copy of the GNU General Public License along // with Eigen; if not, write to the Free Software Foundation, Inc., 51 // Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. // // As a special exception, if other files instantiate templates or use macros // or functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. This exception does not invalidate any other reasons why a work // based on this file might be covered by the GNU General Public License. #include "main.h" namespace Eigen { template void adjoint(const MatrixType& m) { /* this test covers the following files: Transpose.h Conjugate.h Dot.h */ typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols), mzero = MatrixType::zero(rows, cols), identity = Matrix ::identity(rows), square = Matrix ::random(rows, rows); VectorType v1 = VectorType::random(rows), v2 = VectorType::random(rows), v3 = VectorType::random(rows), vzero = VectorType::zero(rows); Scalar s1 = random(), s2 = random(); // check involutivity of adjoint, transpose, conjugate VERIFY_IS_APPROX(m1.transpose().transpose(), m1); VERIFY_IS_APPROX(m1.conjugate().conjugate(), m1); VERIFY_IS_APPROX(m1.adjoint().adjoint(), m1); // check basic compatibility of adjoint, transpose, conjugate VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); if(!NumTraits::IsComplex) VERIFY_IS_APPROX(m1.adjoint().transpose(), m1); // check multiplicative behavior VERIFY_IS_APPROX((m1.transpose() * m2).transpose(), m2.transpose() * m1); VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); VERIFY_IS_APPROX((m1.transpose() * m2).conjugate(), m1.adjoint() * m2.conjugate()); VERIFY_IS_APPROX((s1 * m1).transpose(), s1 * m1.transpose()); VERIFY_IS_APPROX((s1 * m1).conjugate(), conj(s1) * m1.conjugate()); VERIFY_IS_APPROX((s1 * m1).adjoint(), conj(s1) * m1.adjoint()); // check basic properties of dot, norm, norm2 typedef typename NumTraits::Real RealScalar; VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3)); VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), conj(s1)*v3.dot(v1)+conj(s2)*v3.dot(v2)); VERIFY_IS_APPROX(conj(v1.dot(v2)), v2.dot(v1)); VERIFY_IS_APPROX(abs(v1.dot(v1)), v1.norm2()); if(NumTraits::HasFloatingPoint) VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm()); VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast(1)); if(NumTraits::HasFloatingPoint) VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast(1)); // check compatibility of dot and adjoint VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2)); // like in testBasicStuff, test operator() to check const-qualification int r = random(0, rows-1), c = random(0, cols-1); VERIFY_IS_APPROX(m1.conjugate()(r,c), conj(m1(r,c))); VERIFY_IS_APPROX(m1.adjoint()(c,r), conj(m1(r,c))); } void EigenTest::testAdjoint() { for(int i = 0; i < m_repeat; i++) { adjoint(Matrix()); adjoint(Matrix4d()); adjoint(MatrixXcf(3, 3)); adjoint(MatrixXi(8, 12)); adjoint(MatrixXcd(20, 20)); } } } // namespace Eigen