// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . // this hack is needed to make this file compiles with -pedantic (gcc) #ifdef __GNUC__ #define throw(X) #endif // discard stack allocation as that too bypasses malloc #define EIGEN_STACK_ALLOCATION_LIMIT 0 // any heap allocation will raise an assert #define EIGEN_NO_MALLOC #include "main.h" #include #include #include #include #include template void nomalloc(const MatrixType& m) { /* this test check no dynamic memory allocation are issued with fixed-size matrices */ typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = Matrix ::Identity(rows, rows), square = Matrix ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); Scalar s1 = ei_random(); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); if (MatrixType::RowsAtCompileTime Matrix; typedef Eigen::Matrix Vector; typedef Eigen::Matrix, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> ComplexMatrix; const Matrix A(Matrix::Random(size, size)); const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); // const Matrix saA = A.adjoint() * A; // NOTE: This product allocates on the stack. The two following lines are a kludgy workaround Matrix saA(Matrix::Constant(size, size, 1.0)); saA.diagonal().setConstant(2.0); // Cholesky module Eigen::LLT LLT; LLT.compute(A); Eigen::LDLT LDLT; LDLT.compute(A); // Eigenvalues module Eigen::HessenbergDecomposition hessDecomp; hessDecomp.compute(complexA); Eigen::ComplexSchur cSchur(size); cSchur.compute(complexA); Eigen::ComplexEigenSolver cEigSolver; //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack) Eigen::EigenSolver eigSolver; eigSolver.compute(A); Eigen::SelfAdjointEigenSolver saEigSolver(size); saEigSolver.compute(saA); Eigen::Tridiagonalization tridiag; tridiag.compute(saA); // LU module Eigen::PartialPivLU ppLU; ppLU.compute(A); Eigen::FullPivLU fpLU; fpLU.compute(A); // QR module Eigen::HouseholderQR hQR; hQR.compute(A); Eigen::ColPivHouseholderQR cpQR; cpQR.compute(A); Eigen::FullPivHouseholderQR fpQR; fpQR.compute(A); // SVD module Eigen::JacobiSVD jSVD; jSVD.compute(A); Eigen::SVD svd; svd.compute(A); } void test_nomalloc() { // check that our operator new is indeed called: VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); CALL_SUBTEST_1(nomalloc(Matrix()) ); CALL_SUBTEST_2(nomalloc(Matrix4d()) ); CALL_SUBTEST_3(nomalloc(Matrix()) ); // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) CALL_SUBTEST_4(ctms_decompositions()); }