// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include "unsupported/Eigen/SpecialFunctions" #include #if defined __GNUC__ && __GNUC__>=6 #pragma GCC diagnostic ignored "-Wignored-attributes" #endif // using namespace Eigen; #ifdef EIGEN_VECTORIZE_SSE const bool g_vectorize_sse = true; #else const bool g_vectorize_sse = false; #endif bool g_first_pass = true; namespace Eigen { namespace internal { template T negate(const T& x) { return -x; } template Map > bits(const T& x) { return Map >(reinterpret_cast(&x)); } // The following implement bitwise operations on floating point types template T apply_bit_op(Bits a, Bits b, Func f) { Array res; for(Index i=0; i(&res); } #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \ template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \ return apply_bit_op(bits(a),bits(b),FUNC); \ } #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex) EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor()) EIGEN_TEST_MAKE_BITWISE(and,std::bit_and()) EIGEN_TEST_MAKE_BITWISE(or, std::bit_or()) struct bit_andnot{ template T operator()(T a, T b) const { return a & (~b); } }; EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot()) template bool biteq(T a, T b) { return (bits(a) == bits(b)).all(); } } } // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. template EIGEN_DONT_INLINE bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits::Real& refvalue) { return internal::isMuchSmallerThan(a-b, refvalue); } template bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits::Real& refvalue) { for (int i=0; i >(a,size) << "]" << " != vec: [" << Map >(b,size) << "]\n"; return false; } } return true; } template bool areApprox(const Scalar* a, const Scalar* b, int size) { for (int i=0; i >(a,size) << "]" << " != vec: [" << Map >(b,size) << "]\n"; return false; } } return true; } #define CHECK_CWISE1(REFOP, POP) { \ for (int i=0; i(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } template struct packet_helper { template inline Packet load(const T* from) const { return internal::pload(from); } template inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } }; template struct packet_helper { template inline T load(const T* from) const { return *from; } template inline void store(T* to, const T& x) const { *to = x; } }; #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ packet_helper h; \ for (int i=0; i h; \ for (int i=0; i void packetmath() { using std::abs; typedef internal::packet_traits PacketTraits; const int PacketSize = internal::unpacket_traits::size; typedef typename NumTraits::Real RealScalar; if (g_first_pass) std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '" << typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n" ; const int max_size = PacketSize > 4 ? PacketSize : 4; const int size = PacketSize*max_size; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Packet packets[PacketSize*2]; EIGEN_ALIGN_MAX Scalar ref[size]; RealScalar refvalue = RealScalar(0); for (int i=0; i()/RealScalar(PacketSize); data2[i] = internal::random()/RealScalar(PacketSize); refvalue = (std::max)(refvalue,abs(data1[i])); } internal::pstore(data2, internal::pload(data1)); VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); for (int offset=0; offset(data1+offset)); VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu"); } for (int offset=0; offset(data1)); VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu"); } for (int offset=0; offset(data1); packets[1] = internal::pload(data1+PacketSize); if (offset==0) internal::palign<0>(packets[0], packets[1]); else if (offset==1) internal::palign(packets[0], packets[1]); else if (offset==2) internal::palign(packets[0], packets[1]); else if (offset==3) internal::palign(packets[0], packets[1]); else if (offset==4) internal::palign(packets[0], packets[1]); else if (offset==5) internal::palign(packets[0], packets[1]); else if (offset==6) internal::palign(packets[0], packets[1]); else if (offset==7) internal::palign(packets[0], packets[1]); else if (offset==8) internal::palign(packets[0], packets[1]); else if (offset==9) internal::palign(packets[0], packets[1]); else if (offset==10) internal::palign(packets[0], packets[1]); else if (offset==11) internal::palign(packets[0], packets[1]); else if (offset==12) internal::palign(packets[0], packets[1]); else if (offset==13) internal::palign(packets[0], packets[1]); else if (offset==14) internal::palign(packets[0], packets[1]); else if (offset==15) internal::palign(packets[0], packets[1]); internal::pstore(data2, packets[0]); for (int i=0; i::value) || (!PacketTraits::Vectorizable) || PacketTraits::HasDiv); CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd); CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub); CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul); CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv); CHECK_CWISE1(internal::negate, internal::pnegate); CHECK_CWISE1(numext::conj, internal::pconj); for(int offset=0;offset<3;++offset) { for (int i=0; i(data1[offset])); VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1"); } { for (int i=0; i(data1, A0, A1, A2, A3); internal::pstore(data2+0*PacketSize, A0); internal::pstore(data2+1*PacketSize, A1); internal::pstore(data2+2*PacketSize, A2); internal::pstore(data2+3*PacketSize, A3); VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4"); } { for (int i=0; i(data1, A0, A1); internal::pstore(data2+0*PacketSize, A0); internal::pstore(data2+1*PacketSize, A1); VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2"); } VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload(data1))) && "internal::pfirst"); if(PacketSize>1) { // apply different offsets to check that ploaddup is robust to unaligned inputs for(int offset=0;offset<4;++offset) { for(int i=0;i(data1+offset)); VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup"); } } if(PacketSize>2) { // apply different offsets to check that ploadquad is robust to unaligned inputs for(int offset=0;offset<4;++offset) { for(int i=0;i(data1+offset)); VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad"); } } ref[0] = Scalar(0); for (int i=0; i(data1)), refvalue) && "internal::predux"); if(PacketSize==8 && internal::unpacket_traits::half>::size ==4) // so far, predux_half_downto4 is only required in such a case { int HalfPacketSize = PacketSize>4 ? PacketSize/2 : PacketSize; for (int i=0; i(data1))); VERIFY(areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4"); } ref[0] = Scalar(1); for (int i=0; i(data1))) && "internal::predux_mul"); if (PacketTraits::HasReduxp) { for (int j=0; j(data1+j*PacketSize); } internal::pstore(data2, internal::preduxp(packets)); VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp"); } for (int i=0; i(data1))); VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse"); internal::PacketBlock kernel; for (int i=0; i(data1+i*PacketSize); } ptranspose(kernel); for (int i=0; i(data1); Packet elsePacket = internal::pload(data2); EIGEN_ALIGN_MAX internal::Selector selector; for (int i = 0; i < PacketSize; ++i) { selector.select[i] = i; } Packet blend = internal::pblend(selector, thenPacket, elsePacket); EIGEN_ALIGN_MAX Scalar result[size]; internal::pstore(result, blend); for (int i = 0; i < PacketSize; ++i) { VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); } } if (PacketTraits::HasBlend || g_vectorize_sse) { // pinsertfirst for (int i=0; i(); ref[0] = s; internal::pstore(data2, internal::pinsertfirst(internal::pload(data1),s)); VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertfirst"); } if (PacketTraits::HasBlend || g_vectorize_sse) { // pinsertlast for (int i=0; i(); ref[PacketSize-1] = s; internal::pstore(data2, internal::pinsertlast(internal::pload(data1),s)); VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertlast"); } { for (int i=0; i(); unsigned char v = internal::random() ? 0xff : 0; char* bytes = (char*)(data1+PacketSize+i); for(int k=0; k void packetmath_real() { using std::abs; typedef internal::packet_traits PacketTraits; const int PacketSize = internal::unpacket_traits::size; const int size = PacketSize*4; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; for (int i=0; i(-1,1) * std::pow(Scalar(10), internal::random(-3,3)); data2[i] = internal::random(-1,1) * std::pow(Scalar(10), internal::random(-3,3)); } CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan); CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround); CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); for (int i=0; i(-1,1); data2[i] = internal::random(-1,1); } CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos); for (int i=0; i(-87,88); data2[i] = internal::random(-87,88); } CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); for (int i=0; i(-1,1) * std::pow(Scalar(10), internal::random(-6,6)); data2[i] = internal::random(-1,1) * std::pow(Scalar(10), internal::random(-6,6)); } CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); if(PacketTraits::HasExp && PacketSize>=2) { data1[0] = std::numeric_limits::quiet_NaN(); data1[1] = std::numeric_limits::epsilon(); packet_helper h; h.store(data2, internal::pexp(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::exp(std::numeric_limits::epsilon()), data2[1]); data1[0] = -std::numeric_limits::epsilon(); data1[1] = 0; h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_EQUAL(std::exp(-std::numeric_limits::epsilon()), data2[0]); VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]); data1[0] = (std::numeric_limits::min)(); data1[1] = -(std::numeric_limits::min)(); h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_EQUAL(std::exp((std::numeric_limits::min)()), data2[0]); VERIFY_IS_EQUAL(std::exp(-(std::numeric_limits::min)()), data2[1]); data1[0] = std::numeric_limits::denorm_min(); data1[1] = -std::numeric_limits::denorm_min(); h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_EQUAL(std::exp(std::numeric_limits::denorm_min()), data2[0]); VERIFY_IS_EQUAL(std::exp(-std::numeric_limits::denorm_min()), data2[1]); } if (PacketTraits::HasTanh) { // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details. data1[0] = std::numeric_limits::quiet_NaN(); packet_helper::HasTanh,Packet> h; h.store(data2, internal::ptanh(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } #if EIGEN_HAS_C99_MATH { data1[0] = std::numeric_limits::quiet_NaN(); packet_helper::HasLGamma,Packet> h; h.store(data2, internal::plgamma(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } { data1[0] = std::numeric_limits::quiet_NaN(); packet_helper::HasErf,Packet> h; h.store(data2, internal::perf(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } { data1[0] = std::numeric_limits::quiet_NaN(); packet_helper::HasErfc,Packet> h; h.store(data2, internal::perfc(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } #endif // EIGEN_HAS_C99_MATH for (int i=0; i(0,1) * std::pow(Scalar(10), internal::random(-6,6)); data2[i] = internal::random(0,1) * std::pow(Scalar(10), internal::random(-6,6)); } if(internal::random(0,1)<0.1f) data1[internal::random(0, PacketSize)] = 0; CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt); CHECK_CWISE1_IF(PacketTraits::HasSqrt, Scalar(1)/std::sqrt, internal::prsqrt); CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); #if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L) CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1); CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p); CHECK_CWISE1_IF(internal::packet_traits::HasLGamma, std::lgamma, internal::plgamma); CHECK_CWISE1_IF(internal::packet_traits::HasErf, std::erf, internal::perf); CHECK_CWISE1_IF(internal::packet_traits::HasErfc, std::erfc, internal::perfc); #endif if(PacketSize>=2) { data1[0] = std::numeric_limits::quiet_NaN(); data1[1] = std::numeric_limits::epsilon(); if(PacketTraits::HasLog) { packet_helper h; h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::log(std::numeric_limits::epsilon()), data2[1]); data1[0] = -std::numeric_limits::epsilon(); data1[1] = 0; h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]); data1[0] = (std::numeric_limits::min)(); data1[1] = -(std::numeric_limits::min)(); h.store(data2, internal::plog(h.load(data1))); VERIFY_IS_EQUAL(std::log((std::numeric_limits::min)()), data2[0]); VERIFY((numext::isnan)(data2[1])); data1[0] = std::numeric_limits::denorm_min(); data1[1] = -std::numeric_limits::denorm_min(); h.store(data2, internal::plog(h.load(data1))); // VERIFY_IS_EQUAL(std::log(std::numeric_limits::denorm_min()), data2[0]); VERIFY((numext::isnan)(data2[1])); data1[0] = Scalar(-1.0f); h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); data1[0] = std::numeric_limits::infinity(); h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isinf)(data2[0])); } { packet_helper h; data1[0] = Scalar(-1.0f); h.store(data2, internal::psqrt(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); } if(PacketTraits::HasCos) { packet_helper h; for(Scalar k = 1; k::epsilon(); k*=2) { data1[0] = k*Scalar(EIGEN_PI) * internal::random(0.8,1.2); data1[1] = (k+1)*Scalar(EIGEN_PI) * internal::random(0.8,1.2); h.store(data2, internal::pcos(h.load(data1))); VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.)); VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.)); data1[0] = (2*k+1)*Scalar(EIGEN_PI)/2 * internal::random(0.8,1.2); data1[1] = (2*k+3)*Scalar(EIGEN_PI)/2 * internal::random(0.8,1.2); h.store(data2, internal::psin(h.load(data1))); VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.)); VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.)); } data1[0] = std::numeric_limits::infinity(); data1[1] = -std::numeric_limits::infinity(); h.store(data2, internal::psin(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); h.store(data2, internal::pcos(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); data1[0] = std::numeric_limits::quiet_NaN(); h.store(data2, internal::psin(h.load(data1))); VERIFY((numext::isnan)(data2[0])); h.store(data2, internal::pcos(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } } } template void packetmath_notcomplex() { using std::abs; typedef internal::packet_traits PacketTraits; const int PacketSize = internal::unpacket_traits::size; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; Array::Map(data1, PacketSize*4).setRandom(); ref[0] = data1[0]; for (int i=0; i(data1))) && "internal::predux_min"); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax); CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); CHECK_CWISE1(abs, internal::pabs); ref[0] = data1[0]; for (int i=0; i(data1))) && "internal::predux_max"); for (int i=0; i(data1[0])); VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset"); } template void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) { const int PacketSize = internal::unpacket_traits::size; internal::conj_if cj0; internal::conj_if cj1; internal::conj_helper cj; internal::conj_helper pcj; for(int i=0;i(data1),internal::pload(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul"); for(int i=0;i(data1),internal::pload(data2),internal::pload(pval))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); } template void packetmath_complex() { const int PacketSize = internal::unpacket_traits::size; const int size = PacketSize*4; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; EIGEN_ALIGN_MAX Scalar pval[PacketSize*4]; for (int i=0; i() * Scalar(1e2); data2[i] = internal::random() * Scalar(1e2); } test_conj_helper (data1,data2,ref,pval); test_conj_helper (data1,data2,ref,pval); test_conj_helper (data1,data2,ref,pval); test_conj_helper (data1,data2,ref,pval); { for(int i=0;i(data1))); VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip"); } } template void packetmath_scatter_gather() { typedef typename NumTraits::Real RealScalar; const int PacketSize = internal::unpacket_traits::size; EIGEN_ALIGN_MAX Scalar data1[PacketSize]; RealScalar refvalue = 0; for (int i=0; i()/RealScalar(PacketSize); } int stride = internal::random(1,20); EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20]; memset(buffer, 0, 20*PacketSize*sizeof(Scalar)); Packet packet = internal::pload(data1); internal::pscatter(buffer, packet, stride); for (int i = 0; i < PacketSize*20; ++i) { if ((i%stride) == 0 && i()/RealScalar(PacketSize); } packet = internal::pgather(buffer, 7); internal::pstore(data1, packet); for (int i = 0; i < PacketSize; ++i) { VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather"); } } template< typename Scalar, typename PacketType, bool IsComplex = NumTraits::IsComplex, bool IsInteger = NumTraits::IsInteger> struct runall; template struct runall { // i.e. float or double static void run() { packetmath(); packetmath_scatter_gather(); packetmath_notcomplex(); packetmath_real(); } }; template struct runall { // i.e. int static void run() { packetmath(); packetmath_scatter_gather(); packetmath_notcomplex(); } }; template struct runall { // i.e. complex static void run() { packetmath(); packetmath_scatter_gather(); packetmath_complex(); } }; template< typename Scalar, typename PacketType = typename internal::packet_traits::type, bool Vectorized = internal::packet_traits::Vectorizable, bool HasHalf = !internal::is_same::half,PacketType>::value > struct runner; template struct runner { static void run() { runall::run(); runner::half>::run(); } }; template struct runner { static void run() { runall::run(); runall::run(); } }; template struct runner { static void run() { runall::run(); } }; EIGEN_DECLARE_TEST(packetmath) { g_first_pass = true; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( runner::run() ); CALL_SUBTEST_2( runner::run() ); CALL_SUBTEST_3( runner::run() ); CALL_SUBTEST_4( runner >::run() ); CALL_SUBTEST_5( runner >::run() ); CALL_SUBTEST_6(( packetmath::type>() )); g_first_pass = false; } }