// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018-2019 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include template< class Iterator > std::reverse_iterator make_reverse_iterator( Iterator i ) { return std::reverse_iterator(i); } #if !EIGEN_HAS_CXX11 template ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt) { if (firstIt != lastIt) { ForwardIt next = firstIt; while (++next != lastIt) { if (*next < *firstIt) return next; firstIt = next; } } return lastIt; } template bool is_sorted(ForwardIt firstIt, ForwardIt lastIt) { return ::is_sorted_until(firstIt, lastIt) == lastIt; } #else using std::is_sorted; #endif template bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator &) { return true; } template bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator &) { return true; } template bool is_default_constructible_and_assignable(const Iter& it) { #if EIGEN_HAS_CXX11 VERIFY(std::is_default_constructible::value); VERIFY(std::is_nothrow_default_constructible::value); #endif Iter it2; it2 = it; return (it==it2); } template void check_begin_end_for_loop(Xpr xpr) { const Xpr& cxpr(xpr); Index i = 0; i = 0; for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } i = 0; for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } i = 0; for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } i = 0; for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } { // simple API check typename Xpr::const_iterator cit = xpr.begin(); cit = xpr.cbegin(); #if EIGEN_HAS_CXX11 auto tmp1 = xpr.begin(); VERIFY(tmp1==xpr.begin()); auto tmp2 = xpr.cbegin(); VERIFY(tmp2==xpr.cbegin()); #endif } VERIFY( xpr.end() -xpr.begin() == xpr.size() ); VERIFY( xpr.cend()-xpr.begin() == xpr.size() ); VERIFY( xpr.end() -xpr.cbegin() == xpr.size() ); VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() ); if(xpr.size()>0) { VERIFY(xpr.begin() != xpr.end()); VERIFY(xpr.begin() < xpr.end()); VERIFY(xpr.begin() <= xpr.end()); VERIFY(!(xpr.begin() == xpr.end())); VERIFY(!(xpr.begin() > xpr.end())); VERIFY(!(xpr.begin() >= xpr.end())); VERIFY(xpr.cbegin() != xpr.end()); VERIFY(xpr.cbegin() < xpr.end()); VERIFY(xpr.cbegin() <= xpr.end()); VERIFY(!(xpr.cbegin() == xpr.end())); VERIFY(!(xpr.cbegin() > xpr.end())); VERIFY(!(xpr.cbegin() >= xpr.end())); VERIFY(xpr.begin() != xpr.cend()); VERIFY(xpr.begin() < xpr.cend()); VERIFY(xpr.begin() <= xpr.cend()); VERIFY(!(xpr.begin() == xpr.cend())); VERIFY(!(xpr.begin() > xpr.cend())); VERIFY(!(xpr.begin() >= xpr.cend())); } } template void test_stl_iterators(int rows=Rows, int cols=Cols) { typedef Matrix VectorType; #if EIGEN_HAS_CXX11 typedef Matrix RowVectorType; #endif typedef Matrix ColMatrixType; typedef Matrix RowMatrixType; VectorType v = VectorType::Random(rows); const VectorType& cv(v); ColMatrixType A = ColMatrixType::Random(rows,cols); const ColMatrixType& cA(A); RowMatrixType B = RowMatrixType::Random(rows,cols); using Eigen::placeholders::last; Index i, j; // Verify that iterators are default constructible (See bug #1900) { VERIFY( is_default_constructible_and_assignable(v.begin())); VERIFY( is_default_constructible_and_assignable(v.end())); VERIFY( is_default_constructible_and_assignable(cv.begin())); VERIFY( is_default_constructible_and_assignable(cv.end())); VERIFY( is_default_constructible_and_assignable(A.row(0).begin())); VERIFY( is_default_constructible_and_assignable(A.row(0).end())); VERIFY( is_default_constructible_and_assignable(cA.row(0).begin())); VERIFY( is_default_constructible_and_assignable(cA.row(0).end())); VERIFY( is_default_constructible_and_assignable(B.row(0).begin())); VERIFY( is_default_constructible_and_assignable(B.row(0).end())); } // Check we got a fast pointer-based iterator when expected { VERIFY( is_pointer_based_stl_iterator(v.begin()) ); VERIFY( is_pointer_based_stl_iterator(v.end()) ); VERIFY( is_pointer_based_stl_iterator(cv.begin()) ); VERIFY( is_pointer_based_stl_iterator(cv.end()) ); j = internal::random(0,A.cols()-1); VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) ); VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) ); VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) ); VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) ); i = internal::random(0,A.rows()-1); VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) ); VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) ); VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) ); VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) ); VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) ); VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) ); VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) ); VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) ); VERIFY( is_pointer_based_stl_iterator(B.template reshaped().begin()) ); VERIFY( is_pointer_based_stl_iterator(B.template reshaped().end()) ); VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped().begin()) ); VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped().end()) ); } { check_begin_end_for_loop(v); check_begin_end_for_loop(A.col(internal::random(0,A.cols()-1))); check_begin_end_for_loop(A.row(internal::random(0,A.rows()-1))); check_begin_end_for_loop(v+v); } #if EIGEN_HAS_CXX11 // check swappable { using std::swap; // pointer-based { VectorType v_copy = v; auto a = v.begin(); auto b = v.end()-1; swap(a,b); VERIFY_IS_EQUAL(v,v_copy); VERIFY_IS_EQUAL(*b,*v.begin()); VERIFY_IS_EQUAL(*b,v(0)); VERIFY_IS_EQUAL(*a,v.end()[-1]); VERIFY_IS_EQUAL(*a,v(last)); } // generic { RowMatrixType B_copy = B; auto Br = B.reshaped(); auto a = Br.begin(); auto b = Br.end()-1; swap(a,b); VERIFY_IS_EQUAL(B,B_copy); VERIFY_IS_EQUAL(*b,*Br.begin()); VERIFY_IS_EQUAL(*b,Br(0)); VERIFY_IS_EQUAL(*a,Br.end()[-1]); VERIFY_IS_EQUAL(*a,Br(last)); } } // check non-const iterator with for-range loops { i = 0; for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); } j = internal::random(0,A.cols()-1); i = 0; for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); } i = 0; for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; } j = 0; i = internal::random(0,A.rows()-1); for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } i = 0; for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } } // same for const_iterator { i = 0; for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); } i = 0; for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } j = 0; i = internal::random(0,A.rows()-1); for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } } // check reshaped() on row-major { i = 0; Matrix Bc = B; for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); } } // check write access { VectorType w(v.size()); i = 0; for(auto& x : w) { x = v(i++); } VERIFY_IS_EQUAL(v,w); } // check for dangling pointers { // no dangling because pointer-based { j = internal::random(0,A.cols()-1); auto it = A.col(j).begin(); for(i=0;i(0,A.rows()-1); auto it = A.row(i).begin(); for(j=0;j(0,A.cols()-1); // this would produce a dangling pointer: // auto it = (A+2*A).col(j).begin(); // we need to name the temporary expression: auto tmp = (A+2*A).col(j); auto it = tmp.begin(); for(i=0;icoeff(0), A(0,j) ); VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) ); } j=0; for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) { (*it).coeffRef(0) = (*it).coeff(0); // compilation check it->coeffRef(0) = it->coeff(0); // compilation check VERIFY_IS_APPROX( it->coeff(0), A(0,j) ); VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) ); } // check valuetype gives us a copy j=0; for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { typename decltype(it)::value_type tmp = *it; VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() ); VERIFY_IS_APPROX( tmp, A.col(j) ); } } #endif if(rows>=3) { VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1)); VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1)); } if(cols>=3) { VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1)); } // check std::sort { // first check that is_sorted returns false when required if(rows>=2) { v(1) = v(0)-Scalar(1); #if EIGEN_HAS_CXX11 VERIFY(!is_sorted(std::begin(v),std::end(v))); #else VERIFY(!is_sorted(v.cbegin(),v.cend())); #endif } // on a vector { std::sort(v.begin(),v.end()); VERIFY(is_sorted(v.begin(),v.end())); VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin()))); } // on a column of a column-major matrix -> pointer-based iterator and default increment { j = internal::random(0,A.cols()-1); // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators typename ColMatrixType::ColXpr Acol = A.col(j); std::sort(Acol.begin(),Acol.end()); VERIFY(is_sorted(Acol.cbegin(),Acol.cend())); A.setRandom(); std::sort(A.col(j).begin(),A.col(j).end()); VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend())); A.setRandom(); } // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment { i = internal::random(0,A.rows()-1); typename ColMatrixType::RowXpr Arow = A.row(i); VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols); std::sort(Arow.begin(),Arow.end()); VERIFY(is_sorted(Arow.cbegin(),Arow.cend())); A.setRandom(); std::sort(A.row(i).begin(),A.row(i).end()); VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend())); A.setRandom(); } // with a generic iterator { Reshaped B1 = B.reshaped(); std::sort(B1.begin(),B1.end()); VERIFY(is_sorted(B1.cbegin(),B1.cend())); B.setRandom(); // assertion because nested expressions are different // std::sort(B.reshaped().begin(),B.reshaped().end()); // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); // B.setRandom(); } } // check with partial_sum { j = internal::random(0,A.cols()-1); typename ColMatrixType::ColXpr Acol = A.col(j); std::partial_sum(Acol.begin(), Acol.end(), v.begin()); VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last))); // inplace std::partial_sum(Acol.begin(), Acol.end(), Acol.begin()); VERIFY_IS_APPROX(v, Acol); } // stress random access as required by std::nth_element if(rows>=3) { v.setRandom(); VectorType v1 = v; std::sort(v1.begin(),v1.end()); std::nth_element(v.begin(), v.begin()+rows/2, v.end()); VERIFY_IS_APPROX(v1(rows/2), v(rows/2)); v.setRandom(); v1 = v; std::sort(v1.begin()+rows/2,v1.end()); std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end()); VERIFY_IS_APPROX(v1(rows/4), v(rows/4)); } #if EIGEN_HAS_CXX11 // check rows/cols iterators with range-for loops { j = 0; for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; } j = 0; for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; } j = 0; for(auto c : B.colwise()) { i = 0; for(auto& x : c) { VERIFY_IS_EQUAL(x, B(i,j)); x = A(i,j); ++i; } ++j; } VERIFY_IS_APPROX(A,B); B.setRandom(); i = 0; for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; } i = 0; for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; } } // check rows/cols iterators with STL algorithms { RowVectorType row = RowVectorType::Random(cols); A.rowwise() = row; VERIFY( std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) ); VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) ); VectorType col = VectorType::Random(rows); A.colwise() = col; VERIFY( std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); VERIFY( std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); VERIFY( std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); i = internal::random(0,A.rows()-1); A.setRandom(); A.row(i).setZero(); VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(), i ); VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().rbegin(), (A.rows()-1) - i ); j = internal::random(0,A.cols()-1); A.setRandom(); A.col(j).setZero(); VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(), j ); VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().rbegin(), (A.cols()-1) - j ); } { using VecOp = VectorwiseOp; STATIC_CHECK(( internal::is_same().cbegin())>::value )); STATIC_CHECK(( internal::is_same().cend ())>::value )); #if EIGEN_COMP_CXXVER>=14 STATIC_CHECK(( internal::is_same()))>::value )); STATIC_CHECK(( internal::is_same()))>::value )); #endif } #endif } #if EIGEN_HAS_CXX11 // When the compiler sees expression IsContainerTest(0), if C is an // STL-style container class, the first overload of IsContainerTest // will be viable (since both C::iterator* and C::const_iterator* are // valid types and NULL can be implicitly converted to them). It will // be picked over the second overload as 'int' is a perfect match for // the type of argument 0. If C::iterator or C::const_iterator is not // a valid type, the first overload is not viable, and the second // overload will be picked. template ().begin()), class = decltype(::std::declval().end()), class = decltype(++::std::declval()), class = decltype(*::std::declval()), class = typename C::const_iterator> bool IsContainerType(int /* dummy */) { return true; } template bool IsContainerType(long /* dummy */) { return false; } template void test_stl_container_detection(int rows=Rows, int cols=Cols) { typedef Matrix VectorType; typedef Matrix ColMatrixType; typedef Matrix RowMatrixType; ColMatrixType A = ColMatrixType::Random(rows, cols); RowMatrixType B = RowMatrixType::Random(rows, cols); Index i = 1; using ColMatrixColType = decltype(A.col(i)); using ColMatrixRowType = decltype(A.row(i)); using RowMatrixColType = decltype(B.col(i)); using RowMatrixRowType = decltype(B.row(i)); // Vector and matrix col/row are valid Stl-style container. VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); // But the matrix itself is not a valid Stl-style container. VERIFY_IS_EQUAL(IsContainerType(0), rows == 1 || cols == 1); VERIFY_IS_EQUAL(IsContainerType(0), rows == 1 || cols == 1); } #endif EIGEN_DECLARE_TEST(stl_iterators) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( test_stl_iterators() )); CALL_SUBTEST_1(( test_stl_iterators() )); CALL_SUBTEST_1(( test_stl_iterators(internal::random(5,10), internal::random(5,10)) )); CALL_SUBTEST_1(( test_stl_iterators(internal::random(10,200), internal::random(10,200)) )); } #if EIGEN_HAS_CXX11 CALL_SUBTEST_1(( test_stl_container_detection() )); CALL_SUBTEST_1(( test_stl_container_detection() )); #endif }