// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "packetmath_test_shared.h" #include "random_without_cast_overflow.h" template inline T REF_ADD(const T& a, const T& b) { return a + b; } template inline T REF_SUB(const T& a, const T& b) { return a - b; } template inline T REF_MUL(const T& a, const T& b) { return a * b; } template inline T REF_DIV(const T& a, const T& b) { return a / b; } template inline T REF_ABS_DIFF(const T& a, const T& b) { return a > b ? a - b : b - a; } // Specializations for bool. template <> inline bool REF_ADD(const bool& a, const bool& b) { return a || b; } template <> inline bool REF_SUB(const bool& a, const bool& b) { return a ^ b; } template <> inline bool REF_MUL(const bool& a, const bool& b) { return a && b; } template inline T REF_FREXP(const T& x, T& exp) { int iexp; EIGEN_USING_STD(frexp) const T out = static_cast(frexp(x, &iexp)); exp = static_cast(iexp); return out; } template inline T REF_LDEXP(const T& x, const T& exp) { EIGEN_USING_STD(ldexp) return static_cast(ldexp(x, static_cast(exp))); } // Uses pcast to cast from one array to another. template struct pcast_array; template struct pcast_array { typedef typename internal::unpacket_traits::type SrcScalar; typedef typename internal::unpacket_traits::type TgtScalar; static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) { static const int SrcPacketSize = internal::unpacket_traits::size; static const int TgtPacketSize = internal::unpacket_traits::size; size_t i; for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) { internal::pstoreu(dst + i, internal::pcast(internal::ploadu(src + i))); } // Leftovers that cannot be loaded into a packet. for (; i < size; ++i) { dst[i] = static_cast(src[i]); } } }; template struct pcast_array { static void cast(const typename internal::unpacket_traits::type* src, size_t size, typename internal::unpacket_traits::type* dst) { static const int SrcPacketSize = internal::unpacket_traits::size; static const int TgtPacketSize = internal::unpacket_traits::size; for (size_t i = 0; i < size; i += TgtPacketSize) { SrcPacket a = internal::ploadu(src + i); SrcPacket b = internal::ploadu(src + i + SrcPacketSize); internal::pstoreu(dst + i, internal::pcast(a, b)); } } }; template struct pcast_array { static void cast(const typename internal::unpacket_traits::type* src, size_t size, typename internal::unpacket_traits::type* dst) { static const int SrcPacketSize = internal::unpacket_traits::size; static const int TgtPacketSize = internal::unpacket_traits::size; for (size_t i = 0; i < size; i += TgtPacketSize) { SrcPacket a = internal::ploadu(src + i); SrcPacket b = internal::ploadu(src + i + SrcPacketSize); SrcPacket c = internal::ploadu(src + i + 2 * SrcPacketSize); SrcPacket d = internal::ploadu(src + i + 3 * SrcPacketSize); internal::pstoreu(dst + i, internal::pcast(a, b, c, d)); } } }; template struct pcast_array { static void cast(const typename internal::unpacket_traits::type* src, size_t size, typename internal::unpacket_traits::type* dst) { static const int SrcPacketSize = internal::unpacket_traits::size; static const int TgtPacketSize = internal::unpacket_traits::size; for (size_t i = 0; i < size; i += TgtPacketSize) { SrcPacket a = internal::ploadu(src + i); SrcPacket b = internal::ploadu(src + i + SrcPacketSize); SrcPacket c = internal::ploadu(src + i + 2 * SrcPacketSize); SrcPacket d = internal::ploadu(src + i + 3 * SrcPacketSize); SrcPacket e = internal::ploadu(src + i + 4 * SrcPacketSize); SrcPacket f = internal::ploadu(src + i + 5 * SrcPacketSize); SrcPacket g = internal::ploadu(src + i + 6 * SrcPacketSize); SrcPacket h = internal::ploadu(src + i + 7 * SrcPacketSize); internal::pstoreu(dst + i, internal::pcast(a, b, c, d, e, f, g, h)); } } }; template struct test_cast_helper; template struct test_cast_helper { static void run() {} }; template struct test_cast_helper { static void run() { typedef typename internal::unpacket_traits::type SrcScalar; typedef typename internal::unpacket_traits::type TgtScalar; static const int SrcPacketSize = internal::unpacket_traits::size; static const int TgtPacketSize = internal::unpacket_traits::size; static const int BlockSize = SrcPacketSize * SrcCoeffRatio; eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched."); static const int DataSize = 10 * BlockSize; EIGEN_ALIGN_MAX SrcScalar data1[DataSize]; EIGEN_ALIGN_MAX TgtScalar data2[DataSize]; EIGEN_ALIGN_MAX TgtScalar ref[DataSize]; // Construct a packet of scalars that will not overflow when casting for (int i = 0; i < DataSize; ++i) { data1[i] = internal::random_without_cast_overflow::value(); } for (int i = 0; i < DataSize; ++i) { ref[i] = static_cast(data1[i]); } pcast_array::cast(data1, DataSize, data2); VERIFY(test::areApprox(ref, data2, DataSize) && "internal::pcast<>"); } }; template struct test_cast { static void run() { typedef typename internal::unpacket_traits::type SrcScalar; typedef typename internal::unpacket_traits::type TgtScalar; typedef typename internal::type_casting_traits TypeCastingTraits; static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio; static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio; static const int SrcPacketSize = internal::unpacket_traits::size; static const int TgtPacketSize = internal::unpacket_traits::size; static const bool HasCast = internal::unpacket_traits::vectorizable && internal::unpacket_traits::vectorizable && TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio); test_cast_helper::run(); } }; template ::type, bool Vectorized = internal::packet_traits::Vectorizable, bool HasHalf = !internal::is_same::half, TgtPacket>::value> struct test_cast_runner; template struct test_cast_runner { static void run() { test_cast::run(); } }; template struct test_cast_runner { static void run() { test_cast::run(); test_cast_runner::half>::run(); } }; template struct test_cast_runner { static void run() {} }; template struct packetmath_pcast_ops_runner { static void run() { test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner::run(); test_cast_runner >::run(); test_cast_runner >::run(); test_cast_runner::run(); test_cast_runner::run(); } }; // Only some types support cast from std::complex<>. template struct packetmath_pcast_ops_runner::IsComplex>::type> { static void run() { test_cast_runner >::run(); test_cast_runner >::run(); test_cast_runner::run(); test_cast_runner::run(); } }; template void packetmath_boolean_mask_ops() { const int PacketSize = internal::unpacket_traits::size; const int size = 2 * PacketSize; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Scalar ref[size]; for (int i = 0; i < size; ++i) { data1[i] = internal::random(); } CHECK_CWISE1(internal::ptrue, internal::ptrue); CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot); for (int i = 0; i < PacketSize; ++i) { data1[i] = Scalar(i); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); //Test (-0) == (0) for signed operations for (int i = 0; i < PacketSize; ++i) { data1[i] = Scalar(-0.0); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); //Test NaN for (int i = 0; i < PacketSize; ++i) { data1[i] = NumTraits::quiet_NaN(); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); } template void packetmath_boolean_mask_ops_real() { const int PacketSize = internal::unpacket_traits::size; const int size = 2 * PacketSize; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Scalar ref[size]; for (int i = 0; i < PacketSize; ++i) { data1[i] = internal::random(); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); //Test (-0) <=/< (0) for signed operations for (int i = 0; i < PacketSize; ++i) { data1[i] = Scalar(-0.0); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); //Test NaN for (int i = 0; i < PacketSize; ++i) { data1[i] = NumTraits::quiet_NaN(); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); } template void packetmath_boolean_mask_ops_notcomplex() { const int PacketSize = internal::unpacket_traits::size; const int size = 2 * PacketSize; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Scalar ref[size]; for (int i = 0; i < PacketSize; ++i) { data1[i] = internal::random(); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); //Test (-0) <=/< (0) for signed operations for (int i = 0; i < PacketSize; ++i) { data1[i] = Scalar(-0.0); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); //Test NaN for (int i = 0; i < PacketSize; ++i) { data1[i] = NumTraits::quiet_NaN(); data1[i + PacketSize] = internal::random() ? data1[i] : Scalar(0); } CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); } // Packet16b representing bool does not support ptrue, pandnot or pcmp_eq, since the scalar path // (for some compilers) compute the bitwise and with 0x1 of the results to keep the value in [0,1]. template<> void packetmath_boolean_mask_ops::type>() {} template<> void packetmath_boolean_mask_ops_notcomplex::type>() {} template void packetmath_minus_zero_add() { const int PacketSize = internal::unpacket_traits::size; const int size = 2 * PacketSize; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Scalar ref[size]; for (int i = 0; i < PacketSize; ++i) { data1[i] = Scalar(-0.0); data1[i + PacketSize] = Scalar(-0.0); } CHECK_CWISE2_IF(internal::packet_traits::HasAdd, REF_ADD, internal::padd); } // Ensure optimization barrier compiles and doesn't modify contents. // Only applies to raw types, so will not work for std::complex, Eigen::half // or Eigen::bfloat16. For those you would need to refer to an underlying // storage element. template struct eigen_optimization_barrier_test { static void run() {} }; template struct eigen_optimization_barrier_test::IsComplex && !internal::is_same::value && !internal::is_same::value >::type> { static void run() { typedef typename internal::unpacket_traits::type Scalar; Scalar s = internal::random(); Packet barrier = internal::pset1(s); EIGEN_OPTIMIZATION_BARRIER(barrier); eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER"); } }; template void packetmath() { typedef internal::packet_traits PacketTraits; const int PacketSize = internal::unpacket_traits::size; typedef typename NumTraits::Real RealScalar; if (g_first_pass) std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '" << typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n"; const int max_size = PacketSize > 4 ? PacketSize : 4; const int size = PacketSize * max_size; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Scalar data3[size]; EIGEN_ALIGN_MAX Scalar ref[size]; RealScalar refvalue = RealScalar(0); eigen_optimization_barrier_test::run(); eigen_optimization_barrier_test::run(); for (int i = 0; i < size; ++i) { data1[i] = internal::random() / RealScalar(PacketSize); data2[i] = internal::random() / RealScalar(PacketSize); refvalue = (std::max)(refvalue, numext::abs(data1[i])); } internal::pstore(data2, internal::pload(data1)); VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store"); for (int offset = 0; offset < PacketSize; ++offset) { internal::pstore(data2, internal::ploadu(data1 + offset)); VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu"); } for (int offset = 0; offset < PacketSize; ++offset) { internal::pstoreu(data2 + offset, internal::pload(data1)); VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu"); } if (internal::unpacket_traits::masked_load_available) { test::packet_helper::masked_load_available, Packet> h; unsigned long long max_umask = (0x1ull << PacketSize); for (int offset = 0; offset < PacketSize; ++offset) { for (unsigned long long umask = 0; umask < max_umask; ++umask) { h.store(data2, h.load(data1 + offset, umask)); for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0); VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked"); } } } if (internal::unpacket_traits::masked_store_available) { test::packet_helper::masked_store_available, Packet> h; unsigned long long max_umask = (0x1ull << PacketSize); for (int offset = 0; offset < PacketSize; ++offset) { for (unsigned long long umask = 0; umask < max_umask; ++umask) { internal::pstore(data2, internal::pset1(Scalar(0))); h.store(data2, h.loadu(data1 + offset), umask); for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0); VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked"); } } } VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul); CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd); CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub); CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul); CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv); if (PacketTraits::HasNegate) CHECK_CWISE1(internal::negate, internal::pnegate); CHECK_CWISE1(numext::conj, internal::pconj); for (int offset = 0; offset < 3; ++offset) { for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset]; internal::pstore(data2, internal::pset1(data1[offset])); VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1"); } { for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize]; Packet A0, A1, A2, A3; internal::pbroadcast4(data1, A0, A1, A2, A3); internal::pstore(data2 + 0 * PacketSize, A0); internal::pstore(data2 + 1 * PacketSize, A1); internal::pstore(data2 + 2 * PacketSize, A2); internal::pstore(data2 + 3 * PacketSize, A3); VERIFY(test::areApprox(ref, data2, 4 * PacketSize) && "internal::pbroadcast4"); } { for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize]; Packet A0, A1; internal::pbroadcast2(data1, A0, A1); internal::pstore(data2 + 0 * PacketSize, A0); internal::pstore(data2 + 1 * PacketSize, A1); VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && "internal::pbroadcast2"); } VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload(data1))) && "internal::pfirst"); if (PacketSize > 1) { // apply different offsets to check that ploaddup is robust to unaligned inputs for (int offset = 0; offset < 4; ++offset) { for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i]; internal::pstore(data2, internal::ploaddup(data1 + offset)); VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup"); } } if (PacketSize > 2) { // apply different offsets to check that ploadquad is robust to unaligned inputs for (int offset = 0; offset < 4; ++offset) { for (int i = 0; i < PacketSize / 4; ++i) ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i]; internal::pstore(data2, internal::ploadquad(data1 + offset)); VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad"); } } ref[0] = Scalar(0); for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i]; VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload(data1)), refvalue) && "internal::predux"); if (!internal::is_same::half>::value) { int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize; for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0); for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i]; internal::pstore(data2, internal::predux_half_dowto4(internal::pload(data1))); VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4"); } ref[0] = Scalar(1); for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload(data1))) && "internal::predux_mul"); for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1]; internal::pstore(data2, internal::preverse(internal::pload(data1))); VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse"); internal::PacketBlock kernel; for (int i = 0; i < PacketSize; ++i) { kernel.packet[i] = internal::pload(data1 + i * PacketSize); } ptranspose(kernel); for (int i = 0; i < PacketSize; ++i) { internal::pstore(data2, kernel.packet[i]); for (int j = 0; j < PacketSize; ++j) { VERIFY(test::isApproxAbs(data2[j], data1[i + j * PacketSize], refvalue) && "ptranspose"); } } // GeneralBlockPanelKernel also checks PacketBlock; if (PacketSize > 4 && PacketSize % 4 == 0) { internal::PacketBlock kernel2; for (int i = 0; i < 4; ++i) { kernel2.packet[i] = internal::pload(data1 + i * PacketSize); } ptranspose(kernel2); int data_counter = 0; for (int i = 0; i < PacketSize; ++i) { for (int j = 0; j < 4; ++j) { data2[data_counter++] = data1[j*PacketSize + i]; } } for (int i = 0; i < 4; ++i) { internal::pstore(data3, kernel2.packet[i]); for (int j = 0; j < PacketSize; ++j) { VERIFY(test::isApproxAbs(data3[j], data2[i*PacketSize + j], refvalue) && "ptranspose"); } } } if (PacketTraits::HasBlend) { Packet thenPacket = internal::pload(data1); Packet elsePacket = internal::pload(data2); EIGEN_ALIGN_MAX internal::Selector selector; for (int i = 0; i < PacketSize; ++i) { selector.select[i] = i; } Packet blend = internal::pblend(selector, thenPacket, elsePacket); EIGEN_ALIGN_MAX Scalar result[size]; internal::pstore(result, blend); for (int i = 0; i < PacketSize; ++i) { VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); } } { for (int i = 0; i < PacketSize; ++i) { // "if" mask unsigned char v = internal::random() ? 0xff : 0; char* bytes = (char*)(data1 + i); for (int k = 0; k < int(sizeof(Scalar)); ++k) { bytes[k] = v; } // "then" packet data1[i + PacketSize] = internal::random(); // "else" packet data1[i + 2 * PacketSize] = internal::random(); } CHECK_CWISE3_IF(true, internal::pselect, internal::pselect); } for (int i = 0; i < size; ++i) { data1[i] = internal::random(); } CHECK_CWISE1(internal::pzero, internal::pzero); CHECK_CWISE2_IF(true, internal::por, internal::por); CHECK_CWISE2_IF(true, internal::pxor, internal::pxor); CHECK_CWISE2_IF(true, internal::pand, internal::pand); packetmath_boolean_mask_ops(); packetmath_pcast_ops_runner::run(); packetmath_minus_zero_add(); for (int i = 0; i < size; ++i) { data1[i] = numext::abs(internal::random()); } CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt); CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt); } // Notice that this definition works for complex types as well. // c++11 has std::log2 for real, but not for complex types. template Scalar log2(Scalar x) { return Scalar(EIGEN_LOG2E) * std::log(x); } template void packetmath_real() { typedef internal::packet_traits PacketTraits; const int PacketSize = internal::unpacket_traits::size; const int size = PacketSize * 4; EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; for (int i = 0; i < size; ++i) { data1[i] = Scalar(internal::random(0, 1) * std::pow(10., internal::random(-6, 6))); data2[i] = Scalar(internal::random(0, 1) * std::pow(10., internal::random(-6, 6))); } if (internal::random(0, 1) < 0.1f) data1[internal::random(0, PacketSize)] = Scalar(0); CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); CHECK_CWISE1_IF(PacketTraits::HasLog, log2, internal::plog2); CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt); for (int i = 0; i < size; ++i) { data1[i] = Scalar(internal::random(-1, 1) * std::pow(10., internal::random(-3, 3))); data2[i] = Scalar(internal::random(-1, 1) * std::pow(10., internal::random(-3, 3))); } CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan); CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround); CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print); packetmath_boolean_mask_ops_real(); // Rounding edge cases. if (PacketTraits::HasRound || PacketTraits::HasCeil || PacketTraits::HasFloor || PacketTraits::HasRint) { typedef typename internal::make_integer::type IntType; // Start with values that cannot fit inside an integer, work down to less than one. Scalar val = numext::mini( Scalar(2) * static_cast(NumTraits::highest()), NumTraits::highest()); std::vector values; while (val > Scalar(0.25)) { // Cover both even and odd, positive and negative cases. values.push_back(val); values.push_back(val + Scalar(0.3)); values.push_back(val + Scalar(0.5)); values.push_back(val + Scalar(0.8)); values.push_back(val + Scalar(1)); values.push_back(val + Scalar(1.3)); values.push_back(val + Scalar(1.5)); values.push_back(val + Scalar(1.8)); values.push_back(-val); values.push_back(-val - Scalar(0.3)); values.push_back(-val - Scalar(0.5)); values.push_back(-val - Scalar(0.8)); values.push_back(-val - Scalar(1)); values.push_back(-val - Scalar(1.3)); values.push_back(-val - Scalar(1.5)); values.push_back(-val - Scalar(1.8)); values.push_back(Scalar(-1.5) + val); // Bug 1785. val = val / Scalar(2); } values.push_back(NumTraits::infinity()); values.push_back(-NumTraits::infinity()); values.push_back(NumTraits::quiet_NaN()); for (size_t k=0; k(-1, 1)); data2[i] = Scalar(internal::random(-1, 1)); } CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos); for (int i = 0; i < size; ++i) { data1[i] = Scalar(internal::random(-87, 88)); data2[i] = Scalar(internal::random(-87, 88)); } CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); if (PacketTraits::HasExp) { // Check denormals: for (int j=0; j<3; ++j) { data1[0] = Scalar(std::ldexp(1, NumTraits::min_exponent()-j)); CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); data1[0] = -data1[0]; CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); } // zero data1[0] = Scalar(0); CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); // inf and NaN only compare output fraction, not exponent. test::packet_helper h; Packet pout; Scalar sout; Scalar special[] = { NumTraits::infinity(), -NumTraits::infinity(), NumTraits::quiet_NaN()}; for (int i=0; i<3; ++i) { data1[0] = special[i]; ref[0] = Scalar(REF_FREXP(data1[0], ref[PacketSize])); h.store(data2, internal::pfrexp(h.load(data1), h.forward_reference(pout, sout))); VERIFY(test::areApprox(ref, data2, 1) && "internal::pfrexp"); } } for (int i = 0; i < PacketSize; ++i) { data1[i] = Scalar(internal::random(-1, 1)); data2[i] = Scalar(internal::random(-1, 1)); } for (int i = 0; i < PacketSize; ++i) { data1[i+PacketSize] = Scalar(internal::random(-4, 4)); data2[i+PacketSize] = Scalar(internal::random(-4, 4)); } CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); if (PacketTraits::HasExp) { data1[0] = Scalar(-1); // underflow to zero data1[PacketSize] = Scalar(NumTraits::min_exponent()-55); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); // overflow to inf data1[PacketSize] = Scalar(NumTraits::max_exponent()+10); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); // NaN stays NaN data1[0] = NumTraits::quiet_NaN(); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); VERIFY((numext::isnan)(data2[0])); // inf stays inf data1[0] = NumTraits::infinity(); data1[PacketSize] = Scalar(NumTraits::min_exponent()-10); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); // zero stays zero data1[0] = Scalar(0); data1[PacketSize] = Scalar(NumTraits::max_exponent()+10); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); // Small number big exponent. data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits::min_exponent()-1)); data1[PacketSize] = Scalar(-NumTraits::min_exponent() +NumTraits::max_exponent()); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); // Big number small exponent. data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits::max_exponent()-1)); data1[PacketSize] = Scalar(+NumTraits::min_exponent() -NumTraits::max_exponent()); CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); } for (int i = 0; i < size; ++i) { data1[i] = Scalar(internal::random(-1, 1) * std::pow(10., internal::random(-6, 6))); data2[i] = Scalar(internal::random(-1, 1) * std::pow(10., internal::random(-6, 6))); } data1[0] = Scalar(1e-20); CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); if (PacketTraits::HasExp && PacketSize >= 2) { const Scalar small = NumTraits::epsilon(); data1[0] = NumTraits::quiet_NaN(); data1[1] = small; test::packet_helper h; h.store(data2, internal::pexp(h.load(data1))); VERIFY((numext::isnan)(data2[0])); // TODO(rmlarsen): Re-enable for bfloat16. if (!internal::is_same::value) { VERIFY_IS_APPROX(std::exp(small), data2[1]); } data1[0] = -small; data1[1] = Scalar(0); h.store(data2, internal::pexp(h.load(data1))); // TODO(rmlarsen): Re-enable for bfloat16. if (!internal::is_same::value) { VERIFY_IS_APPROX(std::exp(-small), data2[0]); } VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]); data1[0] = (std::numeric_limits::min)(); data1[1] = -(std::numeric_limits::min)(); h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_APPROX(std::exp((std::numeric_limits::min)()), data2[0]); VERIFY_IS_APPROX(std::exp(-(std::numeric_limits::min)()), data2[1]); data1[0] = std::numeric_limits::denorm_min(); data1[1] = -std::numeric_limits::denorm_min(); h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_APPROX(std::exp(std::numeric_limits::denorm_min()), data2[0]); VERIFY_IS_APPROX(std::exp(-std::numeric_limits::denorm_min()), data2[1]); } if (PacketTraits::HasTanh) { // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details. data1[0] = NumTraits::quiet_NaN(); test::packet_helper::HasTanh, Packet> h; h.store(data2, internal::ptanh(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } if (PacketTraits::HasExp) { internal::scalar_logistic_op logistic; for (int i = 0; i < size; ++i) { data1[i] = Scalar(internal::random(-20, 20)); } test::packet_helper h; h.store(data2, logistic.packetOp(h.load(data1))); for (int i = 0; i < PacketSize; ++i) { VERIFY_IS_APPROX(data2[i], logistic(data1[i])); } } #if EIGEN_HAS_C99_MATH && (EIGEN_COMP_CXXVER >= 11) data1[0] = NumTraits::infinity(); data1[1] = Scalar(-1); CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p); data1[0] = NumTraits::infinity(); data1[1] = -NumTraits::infinity(); CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1); #endif if (PacketSize >= 2) { data1[0] = NumTraits::quiet_NaN(); data1[1] = NumTraits::epsilon(); if (PacketTraits::HasLog) { test::packet_helper h; h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); // TODO(cantonios): Re-enable for bfloat16. if (!internal::is_same::value) { VERIFY_IS_APPROX(std::log(data1[1]), data2[1]); } data1[0] = -NumTraits::epsilon(); data1[1] = Scalar(0); h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]); data1[0] = (std::numeric_limits::min)(); data1[1] = -(std::numeric_limits::min)(); h.store(data2, internal::plog(h.load(data1))); // TODO(cantonios): Re-enable for bfloat16. if (!internal::is_same::value) { VERIFY_IS_APPROX(std::log((std::numeric_limits::min)()), data2[0]); } VERIFY((numext::isnan)(data2[1])); // Note: 32-bit arm always flushes denorms to zero. #if !EIGEN_ARCH_ARM if (std::numeric_limits::has_denorm == std::denorm_present) { data1[0] = std::numeric_limits::denorm_min(); data1[1] = -std::numeric_limits::denorm_min(); h.store(data2, internal::plog(h.load(data1))); // TODO(rmlarsen): Re-enable. // VERIFY_IS_EQUAL(std::log(std::numeric_limits::denorm_min()), data2[0]); VERIFY((numext::isnan)(data2[1])); } #endif data1[0] = Scalar(-1.0f); h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); data1[0] = NumTraits::infinity(); h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isinf)(data2[0])); } if (PacketTraits::HasLog1p) { test::packet_helper h; data1[0] = Scalar(-2); data1[1] = -NumTraits::infinity(); h.store(data2, internal::plog1p(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); } if (PacketTraits::HasSqrt) { test::packet_helper h; data1[0] = Scalar(-1.0f); if (std::numeric_limits::has_denorm == std::denorm_present) { data1[1] = -std::numeric_limits::denorm_min(); } else { data1[1] = -NumTraits::epsilon(); } h.store(data2, internal::psqrt(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); } // TODO(rmlarsen): Re-enable for half and bfloat16. if (PacketTraits::HasCos && !internal::is_same::value && !internal::is_same::value) { test::packet_helper h; for (Scalar k = Scalar(1); k < Scalar(10000) / NumTraits::epsilon(); k *= Scalar(2)) { for (int k1 = 0; k1 <= 1; ++k1) { data1[0] = Scalar((2 * double(k) + k1) * double(EIGEN_PI) / 2 * internal::random(0.8, 1.2)); data1[1] = Scalar((2 * double(k) + 2 + k1) * double(EIGEN_PI) / 2 * internal::random(0.8, 1.2)); h.store(data2, internal::pcos(h.load(data1))); h.store(data2 + PacketSize, internal::psin(h.load(data1))); VERIFY(data2[0] <= Scalar(1.) && data2[0] >= Scalar(-1.)); VERIFY(data2[1] <= Scalar(1.) && data2[1] >= Scalar(-1.)); VERIFY(data2[PacketSize + 0] <= Scalar(1.) && data2[PacketSize + 0] >= Scalar(-1.)); VERIFY(data2[PacketSize + 1] <= Scalar(1.) && data2[PacketSize + 1] >= Scalar(-1.)); VERIFY_IS_APPROX(data2[0], std::cos(data1[0])); VERIFY_IS_APPROX(data2[1], std::cos(data1[1])); VERIFY_IS_APPROX(data2[PacketSize + 0], std::sin(data1[0])); VERIFY_IS_APPROX(data2[PacketSize + 1], std::sin(data1[1])); VERIFY_IS_APPROX(numext::abs2(data2[0]) + numext::abs2(data2[PacketSize + 0]), Scalar(1)); VERIFY_IS_APPROX(numext::abs2(data2[1]) + numext::abs2(data2[PacketSize + 1]), Scalar(1)); } } data1[0] = NumTraits::infinity(); data1[1] = -NumTraits::infinity(); h.store(data2, internal::psin(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); h.store(data2, internal::pcos(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); data1[0] = NumTraits::quiet_NaN(); h.store(data2, internal::psin(h.load(data1))); VERIFY((numext::isnan)(data2[0])); h.store(data2, internal::pcos(h.load(data1))); VERIFY((numext::isnan)(data2[0])); data1[0] = -Scalar(0.); h.store(data2, internal::psin(h.load(data1))); VERIFY(internal::biteq(data2[0], data1[0])); h.store(data2, internal::pcos(h.load(data1))); VERIFY_IS_EQUAL(data2[0], Scalar(1)); } } } #define CAST_CHECK_CWISE1_IF(COND, REFOP, POP, SCALAR, REFTYPE) if(COND) { \ test::packet_helper h; \ for (int i=0; i(data1[i]))); \ h.store(data2, POP(h.load(data1))); \ VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ } template Scalar propagate_nan_max(const Scalar& a, const Scalar& b) { if ((numext::isnan)(a)) return a; if ((numext::isnan)(b)) return b; return (numext::maxi)(a,b); } template Scalar propagate_nan_min(const Scalar& a, const Scalar& b) { if ((numext::isnan)(a)) return a; if ((numext::isnan)(b)) return b; return (numext::mini)(a,b); } template Scalar propagate_number_max(const Scalar& a, const Scalar& b) { if ((numext::isnan)(a)) return b; if ((numext::isnan)(b)) return a; return (numext::maxi)(a,b); } template Scalar propagate_number_min(const Scalar& a, const Scalar& b) { if ((numext::isnan)(a)) return b; if ((numext::isnan)(b)) return a; return (numext::mini)(a,b); } template void packetmath_notcomplex() { typedef internal::packet_traits PacketTraits; const int PacketSize = internal::unpacket_traits::size; EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; Array::Map(data1, PacketSize * 4).setRandom(); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax); CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, internal::pmin); CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax); CHECK_CWISE1(numext::abs, internal::pabs); CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff); ref[0] = data1[0]; for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload(data1))) && "internal::predux_min"); ref[0] = data1[0]; for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload(data1))) && "internal::predux_max"); for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i); internal::pstore(data2, internal::plset(data1[0])); VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset"); { unsigned char* data1_bits = reinterpret_cast(data1); // predux_all - not needed yet // for (unsigned int i=0; i(data1)) && "internal::predux_all(1111)"); // for(int k=0; k(data1))) && "internal::predux_all(0101)"); // for (unsigned int i=0; i(data1))) && "internal::predux_any(0000)"); for (int k = 0; k < PacketSize; ++k) { for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff; VERIFY(internal::predux_any(internal::pload(data1)) && "internal::predux_any(0101)"); for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00; } } // Test NaN propagation. if (!NumTraits::IsInteger) { // Test reductions with no NaNs. ref[0] = data1[0]; for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload(data1))) && "internal::predux_min"); ref[0] = data1[0]; for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload(data1))) && "internal::predux_min"); ref[0] = data1[0]; for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload(data1))) && "internal::predux_max"); ref[0] = data1[0]; for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload(data1))) && "internal::predux_max"); // A single NaN. const size_t index = std::numeric_limits::quiet_NaN() % PacketSize; data1[index] = NumTraits::quiet_NaN(); VERIFY(PacketSize==1 || !(numext::isnan)(internal::predux_min(internal::pload(data1)))); VERIFY((numext::isnan)(internal::predux_min(internal::pload(data1)))); VERIFY(PacketSize==1 || !(numext::isnan)(internal::predux_max(internal::pload(data1)))); VERIFY((numext::isnan)(internal::predux_max(internal::pload(data1)))); // All NaNs. for (int i = 0; i < 4 * PacketSize; ++i) data1[i] = NumTraits::quiet_NaN(); VERIFY((numext::isnan)(internal::predux_min(internal::pload(data1)))); VERIFY((numext::isnan)(internal::predux_min(internal::pload(data1)))); VERIFY((numext::isnan)(internal::predux_max(internal::pload(data1)))); VERIFY((numext::isnan)(internal::predux_max(internal::pload(data1)))); // Test NaN propagation for coefficient-wise min and max. for (int i = 0; i < PacketSize; ++i) { data1[i] = internal::random() ? NumTraits::quiet_NaN() : Scalar(0); data1[i + PacketSize] = internal::random() ? NumTraits::quiet_NaN() : Scalar(0); } // Note: NaN propagation is implementation defined for pmin/pmax, so we do not test it here. CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, (internal::pmin)); CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax); CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_nan_min, (internal::pmin)); CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_nan_max, internal::pmax); } packetmath_boolean_mask_ops_notcomplex(); } template void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) { const int PacketSize = internal::unpacket_traits::size; internal::conj_if cj0; internal::conj_if cj1; internal::conj_helper cj; internal::conj_helper pcj; for (int i = 0; i < PacketSize; ++i) { ref[i] = cj0(data1[i]) * cj1(data2[i]); VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul"); } internal::pstore(pval, pcj.pmul(internal::pload(data1), internal::pload(data2))); VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul"); for (int i = 0; i < PacketSize; ++i) { Scalar tmp = ref[i]; ref[i] += cj0(data1[i]) * cj1(data2[i]); VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd"); } internal::pstore( pval, pcj.pmadd(internal::pload(data1), internal::pload(data2), internal::pload(pval))); VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); } template void packetmath_complex() { typedef internal::packet_traits PacketTraits; typedef typename Scalar::value_type RealScalar; const int PacketSize = internal::unpacket_traits::size; const int size = PacketSize * 4; EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4]; for (int i = 0; i < size; ++i) { data1[i] = internal::random() * Scalar(1e2); data2[i] = internal::random() * Scalar(1e2); } test_conj_helper(data1, data2, ref, pval); test_conj_helper(data1, data2, ref, pval); test_conj_helper(data1, data2, ref, pval); test_conj_helper(data1, data2, ref, pval); // Test pcplxflip. { for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i])); internal::pstore(pval, internal::pcplxflip(internal::pload(data1))); VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip"); } if (PacketTraits::HasSqrt) { for (int i = 0; i < size; ++i) { data1[i] = Scalar(internal::random(), internal::random()); } CHECK_CWISE1_N(numext::sqrt, internal::psqrt, size); // Test misc. corner cases. const RealScalar zero = RealScalar(0); const RealScalar one = RealScalar(1); const RealScalar inf = std::numeric_limits::infinity(); const RealScalar nan = std::numeric_limits::quiet_NaN(); data1[0] = Scalar(zero, zero); data1[1] = Scalar(-zero, zero); data1[2] = Scalar(one, zero); data1[3] = Scalar(zero, one); CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); data1[0] = Scalar(-one, zero); data1[1] = Scalar(zero, -one); data1[2] = Scalar(one, one); data1[3] = Scalar(-one, -one); CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); data1[0] = Scalar(inf, zero); data1[1] = Scalar(zero, inf); data1[2] = Scalar(-inf, zero); data1[3] = Scalar(zero, -inf); CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); data1[0] = Scalar(inf, inf); data1[1] = Scalar(-inf, inf); data1[2] = Scalar(inf, -inf); data1[3] = Scalar(-inf, -inf); CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); data1[0] = Scalar(nan, zero); data1[1] = Scalar(zero, nan); data1[2] = Scalar(nan, one); data1[3] = Scalar(one, nan); CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); data1[0] = Scalar(nan, nan); data1[1] = Scalar(inf, nan); data1[2] = Scalar(nan, inf); data1[3] = Scalar(-inf, nan); CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); } } template void packetmath_scatter_gather() { typedef typename NumTraits::Real RealScalar; const int PacketSize = internal::unpacket_traits::size; EIGEN_ALIGN_MAX Scalar data1[PacketSize]; RealScalar refvalue = RealScalar(0); for (int i = 0; i < PacketSize; ++i) { data1[i] = internal::random() / RealScalar(PacketSize); } int stride = internal::random(1, 20); // Buffer of zeros. EIGEN_ALIGN_MAX Scalar buffer[PacketSize * 20] = {}; Packet packet = internal::pload(data1); internal::pscatter(buffer, packet, stride); for (int i = 0; i < PacketSize * 20; ++i) { if ((i % stride) == 0 && i < stride * PacketSize) { VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter"); } else { VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter"); } } for (int i = 0; i < PacketSize * 7; ++i) { buffer[i] = internal::random() / RealScalar(PacketSize); } packet = internal::pgather(buffer, 7); internal::pstore(data1, packet); for (int i = 0; i < PacketSize; ++i) { VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather"); } } namespace Eigen { namespace test { template struct runall { // i.e. float or double static void run() { packetmath(); packetmath_scatter_gather(); packetmath_notcomplex(); packetmath_real(); } }; template struct runall { // i.e. int static void run() { packetmath(); packetmath_scatter_gather(); packetmath_notcomplex(); } }; template struct runall { // i.e. complex static void run() { packetmath(); packetmath_scatter_gather(); packetmath_complex(); } }; } // namespace test } // namespace Eigen EIGEN_DECLARE_TEST(packetmath) { g_first_pass = true; for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(test::runner::run()); CALL_SUBTEST_2(test::runner::run()); CALL_SUBTEST_3(test::runner::run()); CALL_SUBTEST_4(test::runner::run()); CALL_SUBTEST_5(test::runner::run()); CALL_SUBTEST_6(test::runner::run()); CALL_SUBTEST_7(test::runner::run()); CALL_SUBTEST_8(test::runner::run()); CALL_SUBTEST_9(test::runner::run()); CALL_SUBTEST_10(test::runner::run()); CALL_SUBTEST_11(test::runner >::run()); CALL_SUBTEST_12(test::runner >::run()); CALL_SUBTEST_13(test::runner::run()); CALL_SUBTEST_14((packetmath::type>())); CALL_SUBTEST_15(test::runner::run()); g_first_pass = false; } }