// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include #include /* this test covers the following files: Geometry/OrthoMethods.h */ template void orthomethods_3() { typedef Matrix Matrix3; typedef Matrix Vector3; Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(); // cross product VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); Matrix3 mat3; mat3 << v0.normalized(), (v0.cross(v1)).normalized(), (v0.cross(v1).cross(v0)).normalized(); VERIFY(mat3.isUnitary()); // colwise/rowwise cross product mat3.setRandom(); Vector3 vec3 = Vector3::Random(); Matrix3 mcross; int i = ei_random(0,2); mcross = mat3.colwise().cross(vec3); VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); mcross = mat3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); } template void orthomethods(int size=Size) { typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix Matrix3N; typedef Matrix MatrixN3; typedef Matrix Vector3; VectorType v0 = VectorType::Random(size), v1 = VectorType::Random(size), v2 = VectorType::Random(size); // unitOrthogonal VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); if (size>3) { v0.template start<3>().setZero(); v0.end(size-3).setRandom(); VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); } // colwise/rowwise cross product Vector3 vec3 = Vector3::Random(); int i = ei_random(0,size-1); Matrix3N mat3N(3,size), mcross3N(3,size); mat3N.setRandom(); mcross3N = mat3N.colwise().cross(vec3); VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3)); MatrixN3 matN3(size,3), mcrossN3(size,3); matN3.setRandom(); mcrossN3 = matN3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3)); } void test_geo_orthomethods() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( orthomethods_3() ); CALL_SUBTEST( orthomethods_3() ); CALL_SUBTEST( (orthomethods()) ); CALL_SUBTEST( (orthomethods()) ); CALL_SUBTEST( (orthomethods()) ); CALL_SUBTEST( (orthomethods()) ); CALL_SUBTEST( (orthomethods()) ); CALL_SUBTEST( (orthomethods,8>()) ); CALL_SUBTEST( (orthomethods(36)) ); CALL_SUBTEST( (orthomethods(35)) ); } }