// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. // this hack is needed to make this file compiles with -pedantic (gcc) #ifdef __GNUC__ #define throw(X) #endif // discard stack allocation as that too bypasses malloc #define EIGEN_STACK_ALLOCATION_LIMIT 0 // any heap allocation will raise an assert #define EIGEN_NO_MALLOC #include "main.h" template<typename MatrixType> void nomalloc(const MatrixType& m) { /* this test check no dynamic memory allocation are issued with fixed-size matrices */ typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Identity(rows, rows), square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); Scalar s1 = ei_random<Scalar>(); int r = ei_random<int>(0, rows-1), c = ei_random<int>(0, cols-1); VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); if (MatrixType::RowsAtCompileTime<EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD) { // If the matrices are too large, we have better to use the optimized GEMM // routines which allocates temporaries. However, on some platforms // these temporaries are allocated on the stack using alloca. VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); } } void test_nomalloc() { // check that our operator new is indeed called: VERIFY_RAISES_ASSERT(MatrixXd dummy = MatrixXd::Random(3,3)); CALL_SUBTEST(nomalloc(Matrix<float, 1, 1>()) ); CALL_SUBTEST(nomalloc(Matrix4d()) ); CALL_SUBTEST(nomalloc(Matrix<float,32,32>()) ); }