// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #include "main.h" template<typename VectorType> void map_class_vector(const VectorType& m) { typedef typename VectorType::Scalar Scalar; int size = m.size(); // test Map.h Scalar* array1 = ei_aligned_new<Scalar>(size); Scalar* array2 = ei_aligned_new<Scalar>(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3; Map<VectorType, Aligned>(array1, size) = VectorType::Random(size); Map<VectorType>(array2, size) = Map<VectorType>(array1, size); Map<VectorType>(array3unaligned, size) = Map<VectorType>((const Scalar*)array1, size); // test non-const-correctness support in eigen2 VectorType ma1 = Map<VectorType>(array1, size); VectorType ma2 = Map<VectorType, Aligned>(array2, size); VectorType ma3 = Map<VectorType>(array3unaligned, size); VERIFY_IS_APPROX(ma1, ma2); VERIFY_IS_APPROX(ma1, ma3); ei_aligned_delete(array1, size); ei_aligned_delete(array2, size); delete[] array3; } template<typename MatrixType> void map_class_matrix(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; int rows = m.rows(), cols = m.cols(), size = rows*cols; // test Map.h Scalar* array1 = ei_aligned_new<Scalar>(size); for(int i = 0; i < size; i++) array1[i] = Scalar(1); Scalar* array2 = ei_aligned_new<Scalar>(size); for(int i = 0; i < size; i++) array2[i] = Scalar(1); Scalar* array3 = new Scalar[size+1]; for(int i = 0; i < size+1; i++) array3[i] = Scalar(1); Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3; Map<MatrixType, Aligned>(array1, rows, cols) = MatrixType::Ones(rows,cols); Map<MatrixType>(array2, rows, cols) = Map<MatrixType>((const Scalar*)array1, rows, cols); // test non-const-correctness support in eigen2 Map<MatrixType>(array3unaligned, rows, cols) = Map<MatrixType>(array1, rows, cols); MatrixType ma1 = Map<MatrixType>(array1, rows, cols); MatrixType ma2 = Map<MatrixType, Aligned>(array2, rows, cols); VERIFY_IS_APPROX(ma1, ma2); MatrixType ma3 = Map<MatrixType>(array3unaligned, rows, cols); VERIFY_IS_APPROX(ma1, ma3); ei_aligned_delete(array1, size); ei_aligned_delete(array2, size); delete[] array3; } template<typename VectorType> void map_static_methods(const VectorType& m) { typedef typename VectorType::Scalar Scalar; int size = m.size(); // test Map.h Scalar* array1 = ei_aligned_new<Scalar>(size); Scalar* array2 = ei_aligned_new<Scalar>(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3; VectorType::MapAligned(array1, size) = VectorType::Random(size); VectorType::Map(array2, size) = VectorType::Map(array1, size); VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); VectorType ma1 = VectorType::Map(array1, size); VectorType ma2 = VectorType::MapAligned(array2, size); VectorType ma3 = VectorType::Map(array3unaligned, size); VERIFY_IS_APPROX(ma1, ma2); VERIFY_IS_APPROX(ma1, ma3); ei_aligned_delete(array1, size); ei_aligned_delete(array2, size); delete[] array3; } void test_eigen2_map() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_vector(Vector4d()) ); CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); CALL_SUBTEST_6( map_class_matrix(Matrix<float,3,5>()) ); CALL_SUBTEST_4( map_class_matrix(MatrixXcf(ei_random<int>(1,10),ei_random<int>(1,10))) ); CALL_SUBTEST_5( map_class_matrix(MatrixXi(ei_random<int>(1,10),ei_random<int>(1,10))) ); CALL_SUBTEST_1( map_static_methods(Matrix<double, 1, 1>()) ); CALL_SUBTEST_2( map_static_methods(Vector3f()) ); CALL_SUBTEST_7( map_static_methods(RowVector3d()) ); CALL_SUBTEST_4( map_static_methods(VectorXcd(8)) ); CALL_SUBTEST_5( map_static_methods(VectorXf(12)) ); } }