// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); ArrayType m4 = m1; // copy constructor VERIFY_IS_APPROX(m1, m4); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = internal::random(), s2 = internal::random(); // scalar addition VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 - m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 + m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 * m2); m3 = m1; m2 = ArrayType::Random(rows,cols); m2 = (m2==0).select(1,m2); ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 / m2); // reductions VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); using std::abs; VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); // Conversion from scalar VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1)); VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1)); typedef Array FixedArrayType; FixedArrayType f1(s1); VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2(numext::real(s1)); VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3((int)100*numext::real(s1)); VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); f1.setRandom(); FixedArrayType f4(f1.data()); VERIFY_IS_APPROX(f4, f1); // Check possible conflicts with 1D ctor typedef Array OneDArrayType; OneDArrayType o1(rows); VERIFY(o1.size()==rows); OneDArrayType o4((int)rows); VERIFY(o4.size()==rows); } template void comparisons(const ArrayType& m) { using std::abs; typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(1,m4); VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1 < m3).all() ); VERIFY(! (m1 > m3).all() ); } VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all()); // comparisons array to scalar VERIFY( (m1 != (m1(r,c)+1) ).any() ); VERIFY( (m1 > (m1(r,c)-1) ).any() ); VERIFY( (m1 < (m1(r,c)+1) ).any() ); VERIFY( (m1 == m1(r,c) ).any() ); // comparisons scalar to array VERIFY( ( (m1(r,c)+1) != m1).any() ); VERIFY( ( (m1(r,c)-1) < m1).any() ); VERIFY( ( (m1(r,c)+1) > m1).any() ); VERIFY( ( m1(r,c) == m1).any() ); // test Select VERIFY_IS_APPROX( (m1m2).select(m1,m2), m1.cwiseMax(m2) ); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); for (int j=0; j=ArrayType::Constant(rows,cols,mid)) .select(m1,0), m3); // even shorter version: VERIFY_IS_APPROX( (m1.abs()RealScalar(0.1)).count() == rows*cols); // and/or VERIFY( (m1RealScalar(0)).count() == 0); VERIFY( (m1=RealScalar(0)).count() == rows*cols); RealScalar a = m1.abs().mean(); VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count()); typedef Array ArrayOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); } template void array_real(const ArrayType& m) { using std::abs; using std::sqrt; typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(1,m4); Scalar s1 = internal::random(); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); VERIFY_IS_APPROX(m1.atan(), atan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); #ifdef EIGEN_HAS_C99_MATH VERIFY_IS_APPROX(m1.lgamma(), lgamma(m1)); VERIFY_IS_APPROX(m1.digamma(), digamma(m1)); VERIFY_IS_APPROX(m1.erf(), erf(m1)); VERIFY_IS_APPROX(m1.erfc(), erfc(m1)); #endif // EIGEN_HAS_C99_MATH VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); // avoid NaNs with abs() so verification doesn't fail m3 = m1.abs(); VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1))); VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1))); VERIFY_IS_APPROX(m3.log(), log(m3)); VERIFY_IS_APPROX(m3.log10(), log10(m3)); VERIFY((!(m1>m2) == (m1<=m2)).all()); VERIFY_IS_APPROX(sin(m1.asin()), m1); VERIFY_IS_APPROX(cos(m1.acos()), m1); VERIFY_IS_APPROX(tan(m1.atan()), m1); VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast())*std::acos(-1.0)); VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); VERIFY((Eigen::isnan)((m1*0.0)/0.0).all()); VERIFY((Eigen::isinf)(m4/0.0).all()); VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all()); VERIFY_IS_APPROX(inverse(inverse(m1)),m1); VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); VERIFY_IS_APPROX(m3, sqrt(abs2(m1))); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); if(!NumTraits::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); // shift argument of logarithm so that it is not zero Scalar smallNumber = NumTraits::dummy_precision(); VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(pow(m1,2), m1.square()); VERIFY_IS_APPROX(m1.pow(3), m1.cube()); VERIFY_IS_APPROX(pow(m1,3), m1.cube()); VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube()); ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square()); VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(log10(m3), log(m3)/log(10)); // scalar by array division const RealScalar tiny = sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); #ifdef EIGEN_HAS_C99_MATH // check special functions (comparing against numpy implementation) if (!NumTraits::IsComplex) { VERIFY_IS_APPROX(numext::digamma(Scalar(1)), RealScalar(-0.5772156649015329)); VERIFY_IS_APPROX(numext::digamma(Scalar(1.5)), RealScalar(0.03648997397857645)); VERIFY_IS_APPROX(numext::digamma(Scalar(4)), RealScalar(1.2561176684318)); VERIFY_IS_APPROX(numext::digamma(Scalar(-10.5)), RealScalar(2.398239129535781)); VERIFY_IS_APPROX(numext::digamma(Scalar(10000.5)), RealScalar(9.210340372392849)); VERIFY_IS_EQUAL(numext::digamma(Scalar(0)), std::numeric_limits::infinity()); VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)), std::numeric_limits::infinity()); // Check the zeta function against scipy.special.zeta VERIFY_IS_APPROX(numext::zeta(Scalar(1.5), Scalar(2)), RealScalar(1.61237534869)); VERIFY_IS_APPROX(numext::zeta(Scalar(4), Scalar(1.5)), RealScalar(0.234848505667)); VERIFY_IS_APPROX(numext::zeta(Scalar(10.5), Scalar(3)), RealScalar(1.03086757337e-5)); VERIFY_IS_APPROX(numext::zeta(Scalar(10000.5), Scalar(1.0001)), RealScalar(0.367879440865)); VERIFY_IS_APPROX(numext::zeta(Scalar(3), Scalar(-2.5)), RealScalar(0.054102025820864097)); VERIFY_IS_EQUAL(numext::zeta(Scalar(1), Scalar(1.2345)), // The second scalar does not matter std::numeric_limits::infinity()); VERIFY((numext::isnan)(numext::zeta(Scalar(0.9), Scalar(1.2345)))); // The second scalar does not matter // Check the polygamma against scipy.special.polygamma examples VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(2)), RealScalar(0.644934066848)); VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(3)), RealScalar(0.394934066848)); VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(25.5)), RealScalar(0.0399946696496)); VERIFY((numext::isnan)(numext::polygamma(Scalar(1.5), Scalar(1.2345)))); // The second scalar does not matter // Check the polygamma function over a larger range of values VERIFY_IS_APPROX(numext::polygamma(Scalar(17), Scalar(4.7)), RealScalar(293.334565435)); VERIFY_IS_APPROX(numext::polygamma(Scalar(31), Scalar(11.8)), RealScalar(0.445487887616)); VERIFY_IS_APPROX(numext::polygamma(Scalar(28), Scalar(17.7)), RealScalar(-2.47810300902e-07)); VERIFY_IS_APPROX(numext::polygamma(Scalar(8), Scalar(30.2)), RealScalar(-8.29668781082e-09)); /* The following tests only pass for doubles because floats cannot handle the large values of the gamma function. VERIFY_IS_APPROX(numext::polygamma(Scalar(42), Scalar(15.8)), RealScalar(-0.434562276666)); VERIFY_IS_APPROX(numext::polygamma(Scalar(147), Scalar(54.1)), RealScalar(0.567742190178)); VERIFY_IS_APPROX(numext::polygamma(Scalar(170), Scalar(64)), RealScalar(-0.0108615497927)); */ { // Test various propreties of igamma & igammac. These are normalized // gamma integrals where // igammac(a, x) = Gamma(a, x) / Gamma(a) // igamma(a, x) = gamma(a, x) / Gamma(a) // where Gamma and gamma are considered the standard unnormalized // upper and lower incomplete gamma functions, respectively. ArrayType a = m1.abs() + 2; ArrayType x = m2.abs() + 2; ArrayType zero = ArrayType::Zero(rows, cols); ArrayType one = ArrayType::Constant(rows, cols, Scalar(1.0)); ArrayType a_m1 = a - one; ArrayType Gamma_a_x = Eigen::igammac(a, x) * a.lgamma().exp(); ArrayType Gamma_a_m1_x = Eigen::igammac(a_m1, x) * a_m1.lgamma().exp(); ArrayType gamma_a_x = Eigen::igamma(a, x) * a.lgamma().exp(); ArrayType gamma_a_m1_x = Eigen::igamma(a_m1, x) * a_m1.lgamma().exp(); // Gamma(a, 0) == Gamma(a) VERIFY_IS_APPROX(Eigen::igammac(a, zero), one); // Gamma(a, x) + gamma(a, x) == Gamma(a) VERIFY_IS_APPROX(Gamma_a_x + gamma_a_x, a.lgamma().exp()); // Gamma(a, x) == (a - 1) * Gamma(a-1, x) + x^(a-1) * exp(-x) VERIFY_IS_APPROX(Gamma_a_x, (a - 1) * Gamma_a_m1_x + x.pow(a-1) * (-x).exp()); // gamma(a, x) == (a - 1) * gamma(a-1, x) - x^(a-1) * exp(-x) VERIFY_IS_APPROX(gamma_a_x, (a - 1) * gamma_a_m1_x - x.pow(a-1) * (-x).exp()); } // Check exact values of igamma and igammac against a third party calculation. Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; // location i*6+j corresponds to a_s[i], x_s[j]. Scalar nan = std::numeric_limits::quiet_NaN(); Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan}, {0.0, 0.6321205588285578, 0.7768698398515702, 0.9816843611112658, 9.999500016666262e-05, 1.0}, {0.0, 0.4275932955291202, 0.608374823728911, 0.9539882943107686, 7.522076445089201e-07, 1.0}, {0.0, 0.01898815687615381, 0.06564245437845008, 0.5665298796332909, 4.166333347221828e-18, 1.0}, {0.0, 0.9999780593618628, 0.9999899967080838, 0.9999996219837988, 0.9991370418689945, 1.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}}; Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan}, {1.0, 0.36787944117144233, 0.22313016014842982, 0.018315638888734182, 0.9999000049998333, 0.0}, {1.0, 0.5724067044708798, 0.3916251762710878, 0.04601170568923136, 0.9999992477923555, 0.0}, {1.0, 0.9810118431238462, 0.9343575456215499, 0.4334701203667089, 1.0, 0.0}, {1.0, 2.1940638138146658e-05, 1.0003291916285e-05, 3.7801620118431334e-07, 0.0008629581310054535, 0.0}, {1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}}; for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { if ((std::isnan)(igamma_s[i][j])) { VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j]))); } else { VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]); } if ((std::isnan)(igammac_s[i][j])) { VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j]))); } else { VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]); } } } } #endif // EIGEN_HAS_C99_MATH // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); } template void array_complex(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag()); Array m3(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i,j) = sqrt(m1(i,j)); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); VERIFY_IS_APPROX(m1.log(), log(m1)); VERIFY_IS_APPROX(m1.log10(), log10(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j))); VERIFY_IS_APPROX(arg(m1), m3); std::complex zero(0.0,0.0); VERIFY((Eigen::isnan)(m1*zero/zero).all()); #if EIGEN_COMP_MSVC // msvc complex division is not robust VERIFY((Eigen::isinf)(m4/RealScalar(0)).all()); #else #if EIGEN_COMP_CLANG // clang's complex division is notoriously broken too if((numext::isinf)(m4(0,0)/RealScalar(0))) { #endif VERIFY((Eigen::isinf)(m4/zero).all()); #if EIGEN_COMP_CLANG } else { VERIFY((Eigen::isinf)(m4.real()/zero.real()).all()); } #endif #endif // MSVC VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all()); VERIFY_IS_APPROX(inverse(inverse(m1)),m1); VERIFY_IS_APPROX(conj(m1.conjugate()), m1); VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1)))); VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); VERIFY_IS_APPROX(log10(m1), log(m1)/log(10)); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1); // scalar by array division Scalar s1 = internal::random(); const RealScalar tiny = std::sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); // check inplace transpose m2 = m1; m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1.transpose()); m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1); } template void min_max(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); // min/max with array Scalar maxM1 = m1.maxCoeff(); Scalar minM1 = m1.minCoeff(); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1))); VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1))); // min/max with scalar input VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1)); VERIFY_IS_APPROX(m1, (m1.min)( maxM1)); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1)); VERIFY_IS_APPROX(m1, (m1.max)( minM1)); } void test_array() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array(Array()) ); CALL_SUBTEST_2( array(Array22f()) ); CALL_SUBTEST_3( array(Array44d()) ); CALL_SUBTEST_4( array(ArrayXXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_5( array(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( array(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( comparisons(Array()) ); CALL_SUBTEST_2( comparisons(Array22f()) ); CALL_SUBTEST_3( comparisons(Array44d()) ); CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( min_max(Array()) ); CALL_SUBTEST_2( min_max(Array22f()) ); CALL_SUBTEST_3( min_max(Array44d()) ); CALL_SUBTEST_5( min_max(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( min_max(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_real(Array()) ); CALL_SUBTEST_2( array_real(Array22f()) ); CALL_SUBTEST_3( array_real(Array44d()) ); CALL_SUBTEST_5( array_real(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, int >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, float >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); typedef CwiseUnaryOp, ArrayXd > Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); }