// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template bool isNotNaN(const T& x) { return x==x; } template bool isFinite(const T& x) { return isNotNaN(x-x); } template EIGEN_DONT_INLINE T copy(const T& x) { return x; } template void stable_norm(const MatrixType& m) { /* this test covers the following files: StableNorm.h */ typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; // Check the basic machine-dependent constants. { int ibeta, it, iemin, iemax; ibeta = std::numeric_limits::radix; // base for floating-point numbers it = std::numeric_limits::digits; // number of base-beta digits in mantissa iemin = std::numeric_limits::min_exponent; // minimum exponent iemax = std::numeric_limits::max_exponent; // maximum exponent VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); } Index rows = m.rows(); Index cols = m.cols(); Scalar big = internal::random() * (std::numeric_limits::max() * RealScalar(1e-4)); Scalar small = static_cast(1)/big; MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols); vbig.fill(big); vsmall.fill(small); VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); RealScalar size = static_cast(m.size()); // test isFinite VERIFY(!isFinite( std::numeric_limits::infinity())); VERIFY(!isFinite(internal::sqrt(-internal::abs(big)))); // test overflow VERIFY(isFinite(internal::sqrt(size)*internal::abs(big))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), internal::sqrt(size)*internal::abs(big)); // test underflow VERIFY(isFinite(internal::sqrt(size)*internal::abs(small))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), internal::sqrt(size)*internal::abs(small)); // Test compilation of cwise() version VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); } void test_stable_norm() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( stable_norm(Matrix()) ); CALL_SUBTEST_2( stable_norm(Vector4d()) ); CALL_SUBTEST_3( stable_norm(VectorXd(internal::random(10,2000))) ); CALL_SUBTEST_4( stable_norm(VectorXf(internal::random(10,2000))) ); CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random(10,2000))) ); } }