#define EIGEN_ENABLE_EVALUATORS #include "main.h" using internal::copy_using_evaluator; using namespace std; #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval()); #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval()); void test_evaluators() { // Testing Matrix evaluator and Transpose Vector2d v = Vector2d::Random(); const Vector2d v_const(v); Vector2d v2; RowVector2d w; VERIFY_IS_APPROX_EVALUATOR(v2, v); VERIFY_IS_APPROX_EVALUATOR(v2, v_const); // Testing Transpose VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); copy_using_evaluator(w.transpose(), v); // Transpose as lvalue VERIFY_IS_APPROX(w,v.transpose().eval()); copy_using_evaluator(w.transpose(), v_const); VERIFY_IS_APPROX(w,v_const.transpose().eval()); // Testing Array evaluator ArrayXXf a(2,3); ArrayXXf b(3,2); a << 1,2,3, 4,5,6; const ArrayXXf a_const(a); VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); // Testing CwiseNullaryOp evaluator copy_using_evaluator(w, RowVector2d::Random()); VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); // mix CwiseNullaryOp and transpose VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); { int s = internal::random(1,100); MatrixXf a(s,s), b(s,s), c(s,s), d(s,s); a.setRandom(); b.setRandom(); c.setRandom(); d.setRandom(); VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose()); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c); // copy_using_evaluator(d, a.transpose() + (a.transpose() * (b+b))); // cout << d << endl; } // this does not work because Random is eval-before-nested: // copy_using_evaluator(w, Vector2d::Random().transpose()); // test CwiseUnaryOp VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); // test CwiseBinaryOp VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); // dynamic matrices and arrays MatrixXd mat1(6,6), mat2(6,6); VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); copy_using_evaluator(mat2.transpose(), mat1); VERIFY_IS_APPROX(mat2.transpose(), mat1); ArrayXXd arr1(6,6), arr2(6,6); VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0)); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); // test direct traversal Matrix3f m3; Array33f a3; VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary // TODO: find a way to test direct traversal with array VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + m3); // binary VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block // test linear traversal VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary // test inner vectorization Matrix4f m4, m4src = Matrix4f::Random(); Array44f a4, a4src = Matrix4f::Random(); VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose // TODO: find out why Matrix4f::Zero() does not allow inner vectorization VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary // test linear vectorization MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6); ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6); VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary // test blocks and slice vectorization VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0))); VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); Matrix4f m4ref = m4; copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); VERIFY_IS_APPROX(m4, m4ref); mX.setIdentity(20,20); MatrixXf mXref = MatrixXf::Identity(20,20); mXsrc = MatrixXf::Random(9,12); copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); mXref.block(4, 4, 9, 12) = mXsrc; VERIFY_IS_APPROX(mX, mXref); // test Map const float raw[3] = {1,2,3}; float buffer[3] = {0,0,0}; Vector3f v3; Array3f a3f; VERIFY_IS_APPROX_EVALUATOR(v3, Map(raw)); VERIFY_IS_APPROX_EVALUATOR(a3f, Map(raw)); Vector3f::Map(buffer) = 2*v3; VERIFY(buffer[0] == 2); VERIFY(buffer[1] == 4); VERIFY(buffer[2] == 6); // test CwiseUnaryView mat1.setRandom(); mat2.setIdentity(); MatrixXcd matXcd(6,6), matXcd_ref(6,6); copy_using_evaluator(matXcd.real(), mat1); copy_using_evaluator(matXcd.imag(), mat2); matXcd_ref.real() = mat1; matXcd_ref.imag() = mat2; VERIFY_IS_APPROX(matXcd, matXcd_ref); // test Select VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); // test Replicate mXsrc = MatrixXf::Random(6, 6); VectorXf vX = VectorXf::Random(6); mX.resize(6, 6); VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); matXcd.resize(12, 12); VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2)); VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>())); // test partial reductions VectorXd vec1(6); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); // test MatrixWrapper and ArrayWrapper mat1.setRandom(6,6); arr1.setRandom(6,6); VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); mat2.array() = arr1 * arr1; VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); arr2.matrix() = MatrixXd::Identity(6,6); VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); // test Reverse VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); arr2.reverse() = arr1; VERIFY_IS_APPROX(arr2, arr1.reverse()); // test Diagonal VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); vec1.resize(5); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); vec1.setRandom(); mat2 = mat1; copy_using_evaluator(mat1.diagonal(1), vec1); mat2.diagonal(1) = vec1; VERIFY_IS_APPROX(mat1, mat2); copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); mat2.diagonal<-1>() = mat2.diagonal(1); VERIFY_IS_APPROX(mat1, mat2); }