// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli #include #include "main.h" #include int fcn_chkder(int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for chkder example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag != 2) for (i=1; i<=15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } else { for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; /* error introduced into next statement for illustration. */ /* corrected statement should read tmp3 = tmp1 . */ tmp3 = tmp2; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4; fjac[i-1+ ldfjac*(1-1)] = -1.; fjac[i-1+ ldfjac*(2-1)] = tmp1*tmp2/tmp4; fjac[i-1+ ldfjac*(3-1)] = tmp1*tmp3/tmp4; } } return 0; } void testChkder() { int m=15, n=3; VectorXd x(n), fvec(m), xp, fvecp(m), err; MatrixXd fjac(m,n); VectorXi ipvt; /* the following values should be suitable for */ /* checking the jacobian matrix. */ x << 9.2e-1, 1.3e-1, 5.4e-1; ei_chkder(x, fvec, fjac, xp, fvecp, 1, err); fcn_chkder(m, n, x.data(), fvec.data(), fjac.data(), m, 1); fcn_chkder(m, n, x.data(), fvec.data(), fjac.data(), m, 2); fcn_chkder(m, n, xp.data(), fvecp.data(), fjac.data(), m, 1); ei_chkder(x, fvec, fjac, xp, fvecp, 2, err); fvecp -= fvec; // check those VectorXd fvec_ref(m), fvecp_ref(m), err_ref(m); fvec_ref << -1.181606, -1.429655, -1.606344, -1.745269, -1.840654, -1.921586, -1.984141, -2.022537, -2.468977, -2.827562, -3.473582, -4.437612, -6.047662, -9.267761, -18.91806; fvecp_ref << -7.724666e-09, -3.432406e-09, -2.034843e-10, 2.313685e-09, 4.331078e-09, 5.984096e-09, 7.363281e-09, 8.53147e-09, 1.488591e-08, 2.33585e-08, 3.522012e-08, 5.301255e-08, 8.26666e-08, 1.419747e-07, 3.19899e-07; err_ref << 0.1141397, 0.09943516, 0.09674474, 0.09980447, 0.1073116, 0.1220445, 0.1526814, 1, 1, 1, 1, 1, 1, 1, 1; VERIFY_IS_APPROX(fvec, fvec_ref); VERIFY_IS_APPROX(fvecp, fvecp_ref); VERIFY_IS_APPROX(err, err_ref); } struct lmder1_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for lmder1 example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag != 2) { for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { for ( i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4; fjac[i-1 + ldfjac*(1-1)] = -1.; fjac[i-1 + ldfjac*(2-1)] = tmp1*tmp2/tmp4; fjac[i-1 + ldfjac*(3-1)] = tmp1*tmp3/tmp4; } } return 0; } }; void testLmder1() { int m=15, n=3, info; VectorXd x(n), fvec(m); VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmder1(x, fvec, ipvt); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); } struct lmder_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for lmder example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag != 2) { for (i=1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { for (i=1; i<=15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4; fjac[i-1 + ldfjac*(1-1)] = -1.; fjac[i-1 + ldfjac*(2-1)] = tmp1*tmp2/tmp4; fjac[i-1 + ldfjac*(3-1)] = tmp1*tmp3/tmp4; }; } return 0; } }; void testLmder() { const int m=15, n=3; int info, nfev=0, njev=0; double fnorm, covfac, covar_ftol; VectorXd x(n), fvec(m), diag(n); MatrixXd fjac; VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return values VERIFY( 1 == info); VERIFY(nfev==6); VERIFY(njev==5); // check norm fnorm = fvec.norm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); // check covariance covar_ftol = epsilon(); covfac = fnorm*fnorm/(m-n); VectorXd wa(n); ipvt.cwise()+=1; // covar() expects the fortran convention (as qrfac provides) covar(n, fjac.data(), m, ipvt.data(), covar_ftol, wa.data()); MatrixXd cov_ref(n,n); cov_ref << 0.0001531202, 0.002869941, -0.002656662, 0.002869941, 0.09480935, -0.09098995, -0.002656662, -0.09098995, 0.08778727; // std::cout << fjac*covfac << std::endl; MatrixXd cov; cov = covfac*fjac.corner(TopLeft); VERIFY_IS_APPROX( cov, cov_ref); // TODO: why isn't this allowed ? : // VERIFY_IS_APPROX( covfac*fjac.corner(TopLeft) , cov_ref); } struct hybrj1_functor { static int f(void * /*p*/, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for hybrj1 example. */ int j, k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4; if (iflag != 2) { for (k = 1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } } else { for (k = 1; k <= n; k++) { for (j = 1; j <= n; j++) { fjac[k-1 + ldfjac*(j-1)] = zero; } fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1]; if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one; if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two; } } return 0; } }; void testHybrj1() { const int n=9; int info; VectorXd x(n), fvec, diag(n); MatrixXd fjac; /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); // do the computation info = ei_hybrj1(x,fvec, fjac); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct hybrj_functor { static int f(void * /*p*/, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for hybrj example. */ int j, k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag != 2) { for (k=1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } } else { for (k = 1; k <= n; k++) { for (j=1; j <= n; j++) { fjac[k-1 + ldfjac*(j-1)] = zero; } fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1]; if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one; if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two; } } return 0; } }; void testHybrj() { const int n=9; int info, nfev=0, njev=0, mode; VectorXd x(n), fvec, diag(n), R, qtf; MatrixXd fjac; /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); mode = 2; diag.setConstant(n, 1.); // do the computation info = ei_hybrj(x,fvec, nfev, njev, fjac, R, qtf, diag, mode); // check return value VERIFY( 1 == info); VERIFY(nfev==11); VERIFY(njev==1); // check norm VERIFY_IS_APPROX(fvec.norm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct hybrd1_functor { static int f(void * /*p*/, int n, const double *x, double *fvec, int /*iflag*/) { /* subroutine fcn for hybrd1 example. */ int k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0; for (k=1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } return 0; } }; void testHybrd1() { int n=9, info; VectorXd x(n), fvec(n); /* the following starting values provide a rough solution. */ x.setConstant(n, -1.); // do the computation info = ei_hybrd1(x, fvec); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct hybrd_functor { static int f(void * /*p*/, int n, const double *x, double *fvec, int iflag) { /* subroutine fcn for hybrd example. */ int k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } for (k=1; k<=n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } return 0; } }; void testHybrd() { const int n=9; int info, nfev=0, ml, mu, mode; VectorXd x(n), fvec, diag(n), R, qtf; MatrixXd fjac; /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); ml = 1; mu = 1; mode = 2; diag.setConstant(n, 1.); // do the computation info = ei_hybrd(x,fvec, nfev, fjac, R, qtf, diag, mode, ml, mu); // check return value VERIFY( 1 == info); VERIFY(nfev==14); // check norm VERIFY_IS_APPROX(fvec.norm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct lmstr1_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag) { /* subroutine fcn for lmstr1 example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag < 2) { for (i=1; i<=15; i++) { tmp1=i; tmp2 = 16-i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { i = iflag - 1; tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4; fjrow[1-1] = -1; fjrow[2-1] = tmp1*tmp2/tmp4; fjrow[3-1] = tmp1*tmp3/tmp4; } return 0; } }; void testLmstr1() { int m=15, n=3, info; VectorXd x(n), fvec(m); VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmstr1(x, fvec, ipvt); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695 ; VERIFY_IS_APPROX(x, x_ref); } struct lmstr_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag) { /* subroutine fcn for lmstr example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag < 2) { for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { i = iflag - 1; tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4; fjrow[1-1] = -1.; fjrow[2-1] = tmp1*tmp2/tmp4; fjrow[3-1] = tmp1*tmp3/tmp4; } return 0; } }; void testLmstr() { const int m=15, n=3; int info, nfev=0, njev=0; double fnorm; VectorXd x(n), fvec(m), diag(n); MatrixXd fjac; VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmstr(x, fvec, nfev, njev, fjac, ipvt, diag); VectorXd wa(n); // check return values VERIFY( 1 == info); VERIFY(nfev==6); VERIFY(njev==5); // check norm fnorm = fvec.norm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); } struct lmdif1_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int /*iflag*/) { /* function fcn for lmdif1 example */ int i; double tmp1,tmp2,tmp3; double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1, 3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0}; for (i=0; i<15; i++) { tmp1 = i+1; tmp2 = 15 - i; tmp3 = tmp1; if (i >= 8) tmp3 = tmp2; fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); } return 0; } }; void testLmdif1() { int m=15, n=3, info; VectorXd x(n), fvec(m); /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmdif1(x, fvec); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.0824106, 1.1330366, 2.3436947; VERIFY_IS_APPROX(x, x_ref); } struct lmdif_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int iflag) { /* subroutine fcn for lmdif example. */ int i; double tmp1, tmp2, tmp3; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } return 0; } }; void testLmdif() { const int m=15, n=3; int info, nfev=0; double fnorm, covfac, covar_ftol; VectorXd x(n), fvec(m), diag(n), qtf; MatrixXd fjac; VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmdif(x, fvec, nfev, fjac, ipvt, qtf, diag); // check return values VERIFY( 1 == info); VERIFY(nfev==21); // check norm fnorm = fvec.norm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); // check covariance covar_ftol = epsilon(); covfac = fnorm*fnorm/(m-n); VectorXd wa(n); ipvt.cwise()+=1; // covar() expects the fortran convention (as qrfac provides) covar(n, fjac.data(), m, ipvt.data(), covar_ftol, wa.data()); MatrixXd cov_ref(n,n); cov_ref << 0.0001531202, 0.002869942, -0.002656662, 0.002869942, 0.09480937, -0.09098997, -0.002656662, -0.09098997, 0.08778729; // std::cout << fjac*covfac << std::endl; MatrixXd cov; cov = covfac*fjac.corner(TopLeft); VERIFY_IS_APPROX( cov, cov_ref); // TODO: why isn't this allowed ? : // VERIFY_IS_APPROX( covfac*fjac.corner(TopLeft) , cov_ref); } struct chwirut2_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double _x[54] = { 0.500E0, 1.000E0, 1.750E0, 3.750E0, 5.750E0, 0.875E0, 2.250E0, 3.250E0, 5.250E0, 0.750E0, 1.750E0, 2.750E0, 4.750E0, 0.625E0, 1.250E0, 2.250E0, 4.250E0, .500E0, 3.000E0, .750E0, 3.000E0, 1.500E0, 6.000E0, 3.000E0, 6.000E0, 1.500E0, 3.000E0, .500E0, 2.000E0, 4.000E0, .750E0, 2.000E0, 5.000E0, .750E0, 2.250E0, 3.750E0, 5.750E0, 3.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .500E0, 6.000E0, 3.000E0, .500E0, 2.750E0, .500E0, 1.750E0}; static const double y[54] = { 92.9000E0 ,57.1000E0 ,31.0500E0 ,11.5875E0 ,8.0250E0 ,63.6000E0 ,21.4000E0 ,14.2500E0 ,8.4750E0 ,63.8000E0 ,26.8000E0 ,16.4625E0 ,7.1250E0 ,67.3000E0 ,41.0000E0 ,21.1500E0 ,8.1750E0 ,81.5000E0 ,13.1200E0 ,59.9000E0 ,14.6200E0 ,32.9000E0 ,5.4400E0 ,12.5600E0 ,5.4400E0 ,32.0000E0 ,13.9500E0 ,75.8000E0 ,20.0000E0 ,10.4200E0 ,59.5000E0 ,21.6700E0 ,8.5500E0 ,62.0000E0 ,20.2000E0 ,7.7600E0 ,3.7500E0 ,11.8100E0 ,54.7000E0 ,23.7000E0 ,11.5500E0 ,61.3000E0 ,17.7000E0 ,8.7400E0 ,59.2000E0 ,16.3000E0 ,8.6200E0 ,81.0000E0 ,4.8700E0 ,14.6200E0 ,81.7000E0 ,17.1700E0 ,81.3000E0 ,28.9000E0 }; int i; assert(m==54); assert(n==3); assert(ldfjac==54); if (iflag != 2) {// compute fvec at b for(i=0; i<54; i++) { double x = _x[i]; fvec[i] = exp(-b[0]*x)/(b[1]+b[2]*x) - y[i]; } } else { // compute fjac at b for(i=0; i<54; i++) { double x = _x[i]; double factor = 1./(b[1]+b[2]*x); double e = exp(-b[0]*x); fjac[i+ldfjac*0] = -x*e*factor; fjac[i+ldfjac*1] = -e*factor*factor; fjac[i+ldfjac*2] = -x*e*factor*factor; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml void testNistChwirut2(void) { const int m=54, n=3; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 0.1, 0.01, 0.02; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 10 == nfev); VERIFY( 8 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.1304802941E+02); // check x VERIFY_IS_APPROX(x[0], 1.6657666537E-01); VERIFY_IS_APPROX(x[1], 5.1653291286E-03); VERIFY_IS_APPROX(x[2], 1.2150007096E-02); /* * Second try */ x<< 0.15, 0.008, 0.010; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 400, 1.E6*epsilon(), 1.E6*epsilon()); // check return value VERIFY( 1 == info); VERIFY( 7 == nfev); VERIFY( 6 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.1304802941E+02); // check x VERIFY_IS_APPROX(x[0], 1.6657666537E-01); VERIFY_IS_APPROX(x[1], 5.1653291286E-03); VERIFY_IS_APPROX(x[2], 1.2150007096E-02); } struct misra1a_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0}; static const double y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0}; int i; assert(m==14); assert(n==2); assert(ldfjac==14); if (iflag != 2) {// compute fvec at b for(i=0; i<14; i++) { fvec[i] = b[0]*(1.-exp(-b[1]*x[i])) - y[i] ; } } else { // compute fjac at b for(i=0; i<14; i++) { fjac[i+ldfjac*0] = (1.-exp(-b[1]*x[i])); fjac[i+ldfjac*1] = (b[0]*x[i]*exp(-b[1]*x[i])); } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml void testNistMisra1a(void) { const int m=14, n=2; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 500., 0.0001; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 19 == nfev); VERIFY( 15 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.2455138894E-01); // check x VERIFY_IS_APPROX(x[0], 2.3894212918E+02); VERIFY_IS_APPROX(x[1], 5.5015643181E-04); /* * Second try */ x<< 250., 0.0005; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 5 == nfev); VERIFY( 4 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.2455138894E-01); // check x VERIFY_IS_APPROX(x[0], 2.3894212918E+02); VERIFY_IS_APPROX(x[1], 5.5015643181E-04); } struct hahn1_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double _x[236] = { 24.41E0 , 34.82E0 , 44.09E0 , 45.07E0 , 54.98E0 , 65.51E0 , 70.53E0 , 75.70E0 , 89.57E0 , 91.14E0 , 96.40E0 , 97.19E0 , 114.26E0 , 120.25E0 , 127.08E0 , 133.55E0 , 133.61E0 , 158.67E0 , 172.74E0 , 171.31E0 , 202.14E0 , 220.55E0 , 221.05E0 , 221.39E0 , 250.99E0 , 268.99E0 , 271.80E0 , 271.97E0 , 321.31E0 , 321.69E0 , 330.14E0 , 333.03E0 , 333.47E0 , 340.77E0 , 345.65E0 , 373.11E0 , 373.79E0 , 411.82E0 , 419.51E0 , 421.59E0 , 422.02E0 , 422.47E0 , 422.61E0 , 441.75E0 , 447.41E0 , 448.7E0 , 472.89E0 , 476.69E0 , 522.47E0 , 522.62E0 , 524.43E0 , 546.75E0 , 549.53E0 , 575.29E0 , 576.00E0 , 625.55E0 , 20.15E0 , 28.78E0 , 29.57E0 , 37.41E0 , 39.12E0 , 50.24E0 , 61.38E0 , 66.25E0 , 73.42E0 , 95.52E0 , 107.32E0 , 122.04E0 , 134.03E0 , 163.19E0 , 163.48E0 , 175.70E0 , 179.86E0 , 211.27E0 , 217.78E0 , 219.14E0 , 262.52E0 , 268.01E0 , 268.62E0 , 336.25E0 , 337.23E0 , 339.33E0 , 427.38E0 , 428.58E0 , 432.68E0 , 528.99E0 , 531.08E0 , 628.34E0 , 253.24E0 , 273.13E0 , 273.66E0 , 282.10E0 , 346.62E0 , 347.19E0 , 348.78E0 , 351.18E0 , 450.10E0 , 450.35E0 , 451.92E0 , 455.56E0 , 552.22E0 , 553.56E0 , 555.74E0 , 652.59E0 , 656.20E0 , 14.13E0 , 20.41E0 , 31.30E0 , 33.84E0 , 39.70E0 , 48.83E0 , 54.50E0 , 60.41E0 , 72.77E0 , 75.25E0 , 86.84E0 , 94.88E0 , 96.40E0 , 117.37E0 , 139.08E0 , 147.73E0 , 158.63E0 , 161.84E0 , 192.11E0 , 206.76E0 , 209.07E0 , 213.32E0 , 226.44E0 , 237.12E0 , 330.90E0 , 358.72E0 , 370.77E0 , 372.72E0 , 396.24E0 , 416.59E0 , 484.02E0 , 495.47E0 , 514.78E0 , 515.65E0 , 519.47E0 , 544.47E0 , 560.11E0 , 620.77E0 , 18.97E0 , 28.93E0 , 33.91E0 , 40.03E0 , 44.66E0 , 49.87E0 , 55.16E0 , 60.90E0 , 72.08E0 , 85.15E0 , 97.06E0 , 119.63E0 , 133.27E0 , 143.84E0 , 161.91E0 , 180.67E0 , 198.44E0 , 226.86E0 , 229.65E0 , 258.27E0 , 273.77E0 , 339.15E0 , 350.13E0 , 362.75E0 , 371.03E0 , 393.32E0 , 448.53E0 , 473.78E0 , 511.12E0 , 524.70E0 , 548.75E0 , 551.64E0 , 574.02E0 , 623.86E0 , 21.46E0 , 24.33E0 , 33.43E0 , 39.22E0 , 44.18E0 , 55.02E0 , 94.33E0 , 96.44E0 , 118.82E0 , 128.48E0 , 141.94E0 , 156.92E0 , 171.65E0 , 190.00E0 , 223.26E0 , 223.88E0 , 231.50E0 , 265.05E0 , 269.44E0 , 271.78E0 , 273.46E0 , 334.61E0 , 339.79E0 , 349.52E0 , 358.18E0 , 377.98E0 , 394.77E0 , 429.66E0 , 468.22E0 , 487.27E0 , 519.54E0 , 523.03E0 , 612.99E0 , 638.59E0 , 641.36E0 , 622.05E0 , 631.50E0 , 663.97E0 , 646.9E0 , 748.29E0 , 749.21E0 , 750.14E0 , 647.04E0 , 646.89E0 , 746.9E0 , 748.43E0 , 747.35E0 , 749.27E0 , 647.61E0 , 747.78E0 , 750.51E0 , 851.37E0 , 845.97E0 , 847.54E0 , 849.93E0 , 851.61E0 , 849.75E0 , 850.98E0 , 848.23E0}; static const double _y[236] = { .591E0 , 1.547E0 , 2.902E0 , 2.894E0 , 4.703E0 , 6.307E0 , 7.03E0 , 7.898E0 , 9.470E0 , 9.484E0 , 10.072E0 , 10.163E0 , 11.615E0 , 12.005E0 , 12.478E0 , 12.982E0 , 12.970E0 , 13.926E0 , 14.452E0 , 14.404E0 , 15.190E0 , 15.550E0 , 15.528E0 , 15.499E0 , 16.131E0 , 16.438E0 , 16.387E0 , 16.549E0 , 16.872E0 , 16.830E0 , 16.926E0 , 16.907E0 , 16.966E0 , 17.060E0 , 17.122E0 , 17.311E0 , 17.355E0 , 17.668E0 , 17.767E0 , 17.803E0 , 17.765E0 , 17.768E0 , 17.736E0 , 17.858E0 , 17.877E0 , 17.912E0 , 18.046E0 , 18.085E0 , 18.291E0 , 18.357E0 , 18.426E0 , 18.584E0 , 18.610E0 , 18.870E0 , 18.795E0 , 19.111E0 , .367E0 , .796E0 , 0.892E0 , 1.903E0 , 2.150E0 , 3.697E0 , 5.870E0 , 6.421E0 , 7.422E0 , 9.944E0 , 11.023E0 , 11.87E0 , 12.786E0 , 14.067E0 , 13.974E0 , 14.462E0 , 14.464E0 , 15.381E0 , 15.483E0 , 15.59E0 , 16.075E0 , 16.347E0 , 16.181E0 , 16.915E0 , 17.003E0 , 16.978E0 , 17.756E0 , 17.808E0 , 17.868E0 , 18.481E0 , 18.486E0 , 19.090E0 , 16.062E0 , 16.337E0 , 16.345E0 , 16.388E0 , 17.159E0 , 17.116E0 , 17.164E0 , 17.123E0 , 17.979E0 , 17.974E0 , 18.007E0 , 17.993E0 , 18.523E0 , 18.669E0 , 18.617E0 , 19.371E0 , 19.330E0 , 0.080E0 , 0.248E0 , 1.089E0 , 1.418E0 , 2.278E0 , 3.624E0 , 4.574E0 , 5.556E0 , 7.267E0 , 7.695E0 , 9.136E0 , 9.959E0 , 9.957E0 , 11.600E0 , 13.138E0 , 13.564E0 , 13.871E0 , 13.994E0 , 14.947E0 , 15.473E0 , 15.379E0 , 15.455E0 , 15.908E0 , 16.114E0 , 17.071E0 , 17.135E0 , 17.282E0 , 17.368E0 , 17.483E0 , 17.764E0 , 18.185E0 , 18.271E0 , 18.236E0 , 18.237E0 , 18.523E0 , 18.627E0 , 18.665E0 , 19.086E0 , 0.214E0 , 0.943E0 , 1.429E0 , 2.241E0 , 2.951E0 , 3.782E0 , 4.757E0 , 5.602E0 , 7.169E0 , 8.920E0 , 10.055E0 , 12.035E0 , 12.861E0 , 13.436E0 , 14.167E0 , 14.755E0 , 15.168E0 , 15.651E0 , 15.746E0 , 16.216E0 , 16.445E0 , 16.965E0 , 17.121E0 , 17.206E0 , 17.250E0 , 17.339E0 , 17.793E0 , 18.123E0 , 18.49E0 , 18.566E0 , 18.645E0 , 18.706E0 , 18.924E0 , 19.1E0 , 0.375E0 , 0.471E0 , 1.504E0 , 2.204E0 , 2.813E0 , 4.765E0 , 9.835E0 , 10.040E0 , 11.946E0 , 12.596E0 , 13.303E0 , 13.922E0 , 14.440E0 , 14.951E0 , 15.627E0 , 15.639E0 , 15.814E0 , 16.315E0 , 16.334E0 , 16.430E0 , 16.423E0 , 17.024E0 , 17.009E0 , 17.165E0 , 17.134E0 , 17.349E0 , 17.576E0 , 17.848E0 , 18.090E0 , 18.276E0 , 18.404E0 , 18.519E0 , 19.133E0 , 19.074E0 , 19.239E0 , 19.280E0 , 19.101E0 , 19.398E0 , 19.252E0 , 19.89E0 , 20.007E0 , 19.929E0 , 19.268E0 , 19.324E0 , 20.049E0 , 20.107E0 , 20.062E0 , 20.065E0 , 19.286E0 , 19.972E0 , 20.088E0 , 20.743E0 , 20.83E0 , 20.935E0 , 21.035E0 , 20.93E0 , 21.074E0 , 21.085E0 , 20.935E0 }; int i; // static int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++; assert(m==236); assert(n==7); assert(ldfjac==236); if (iflag != 2) {// compute fvec at x for(i=0; i<236; i++) { double x=_x[i], xx=x*x, xxx=xx*x; fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i]; } } else { // compute fjac at x for(i=0; i<236; i++) { double x=_x[i], xx=x*x, xxx=xx*x; double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx); fjac[i+ldfjac*0] = 1.*fact; fjac[i+ldfjac*1] = x*fact; fjac[i+ldfjac*2] = xx*fact; fjac[i+ldfjac*3] = xxx*fact; fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact; fjac[i+ldfjac*4] = x*fact; fjac[i+ldfjac*5] = xx*fact; fjac[i+ldfjac*6] = xxx*fact; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml void testNistHahn1(void) { const int m=236, n=7; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 10., -1., .05, -.00001, -.05, .001, -.000001; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 11== nfev); VERIFY( 10== njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.5324382854E+00); // check x VERIFY_IS_APPROX(x[0], 1.0776351733E+00 ); VERIFY_IS_APPROX(x[1],-1.2269296921E-01 ); VERIFY_IS_APPROX(x[2], 4.0863750610E-03 ); VERIFY_IS_APPROX(x[3],-1.426264e-06); // shoulde be : -1.4262662514E-06 VERIFY_IS_APPROX(x[4],-5.7609940901E-03 ); VERIFY_IS_APPROX(x[5], 2.4053735503E-04 ); VERIFY_IS_APPROX(x[6],-1.2314450199E-07 ); /* * Second try */ x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 11 == nfev); VERIFY( 10 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.5324382854E+00); // check x VERIFY_IS_APPROX(x[0], 1.077640); // should be : 1.0776351733E+00 VERIFY_IS_APPROX(x[1], -0.1226933); // should be : -1.2269296921E-01 VERIFY_IS_APPROX(x[2], 0.004086383); // should be : 4.0863750610E-03 VERIFY_IS_APPROX(x[3], -1.426277e-06); // shoulde be : -1.4262662514E-06 VERIFY_IS_APPROX(x[4],-5.7609940901E-03 ); VERIFY_IS_APPROX(x[5], 0.00024053772); // should be : 2.4053735503E-04 VERIFY_IS_APPROX(x[6], -1.231450e-07); // should be : -1.2314450199E-07 } struct misra1d_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0}; static const double y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0}; int i; assert(m==14); assert(n==2); assert(ldfjac==14); if (iflag != 2) {// compute fvec at b for(i=0; i<14; i++) { fvec[i] = b[0]*b[1]*x[i]/(1.+b[1]*x[i]) - y[i]; } } else { // compute fjac at b for(i=0; i<14; i++) { double den = 1.+b[1]*x[i]; fjac[i+ldfjac*0] = b[1]*x[i] / den; fjac[i+ldfjac*1] = b[0]*x[i]*(den-b[1]*x[i])/den/den; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/misra1d.shtml void testNistMisra1d(void) { const int m=14, n=2; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 500., 0.0001; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 3 == info); VERIFY( 9 == nfev); VERIFY( 7 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6419295283E-02); // check x VERIFY_IS_APPROX(x[0], 4.3736970754E+02); VERIFY_IS_APPROX(x[1], 3.0227324449E-04); /* * Second try */ x<< 450., 0.0003; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 4 == nfev); VERIFY( 3 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6419295283E-02); // check x VERIFY_IS_APPROX(x[0], 4.3736970754E+02); VERIFY_IS_APPROX(x[1], 3.0227324449E-04); } struct lanczos1_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[24] = { 0.000000000000E+00, 5.000000000000E-02, 1.000000000000E-01, 1.500000000000E-01, 2.000000000000E-01, 2.500000000000E-01, 3.000000000000E-01, 3.500000000000E-01, 4.000000000000E-01, 4.500000000000E-01, 5.000000000000E-01, 5.500000000000E-01, 6.000000000000E-01, 6.500000000000E-01, 7.000000000000E-01, 7.500000000000E-01, 8.000000000000E-01, 8.500000000000E-01, 9.000000000000E-01, 9.500000000000E-01, 1.000000000000E+00, 1.050000000000E+00, 1.100000000000E+00, 1.150000000000E+00 }; static const double y[24] = { 2.513400000000E+00 ,2.044333373291E+00 ,1.668404436564E+00 ,1.366418021208E+00 ,1.123232487372E+00 ,9.268897180037E-01 ,7.679338563728E-01 ,6.388775523106E-01 ,5.337835317402E-01 ,4.479363617347E-01 ,3.775847884350E-01 ,3.197393199326E-01 ,2.720130773746E-01 ,2.324965529032E-01 ,1.996589546065E-01 ,1.722704126914E-01 ,1.493405660168E-01 ,1.300700206922E-01 ,1.138119324644E-01 ,1.000415587559E-01 ,8.833209084540E-02 ,7.833544019350E-02 ,6.976693743449E-02 ,6.239312536719E-02 }; int i; assert(m==24); assert(n==6); assert(ldfjac==24); if (iflag != 2) {// compute fvec at b for(i=0; i<24; i++) { fvec[i] = b[0]*exp(-b[1]*x[i]) + b[2]*exp(-b[3]*x[i]) + b[4]*exp(-b[5]*x[i]) - y[i]; } } else { // compute fjac at b for(i=0; i<24; i++) { fjac[i+ldfjac*0] = exp(-b[1]*x[i]); fjac[i+ldfjac*1] = -b[0]*x[i]*exp(-b[1]*x[i]); fjac[i+ldfjac*2] = exp(-b[3]*x[i]); fjac[i+ldfjac*3] = -b[2]*x[i]*exp(-b[3]*x[i]); fjac[i+ldfjac*4] = exp(-b[5]*x[i]); fjac[i+ldfjac*5] = -b[4]*x[i]*exp(-b[5]*x[i]); } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml void testNistLanczos1(void) { const int m=24, n=6; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 1.2, 0.3, 5.6, 5.5, 6.5, 7.6; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 2 == info); VERIFY( 79 == nfev); VERIFY( 72 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.429604433690E-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats // check x VERIFY_IS_APPROX(x[0], 9.5100000027E-02 ); VERIFY_IS_APPROX(x[1], 1.0000000001E+00 ); VERIFY_IS_APPROX(x[2], 8.6070000013E-01 ); VERIFY_IS_APPROX(x[3], 3.0000000002E+00 ); VERIFY_IS_APPROX(x[4], 1.5575999998E+00 ); VERIFY_IS_APPROX(x[5], 5.0000000001E+00 ); /* * Second try */ x<< 0.5, 0.7, 3.6, 4.2, 4., 6.3; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 2 == info); VERIFY( 9 == nfev); VERIFY( 8 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.43049947737308E-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats // check x VERIFY_IS_APPROX(x[0], 9.5100000027E-02 ); VERIFY_IS_APPROX(x[1], 1.0000000001E+00 ); VERIFY_IS_APPROX(x[2], 8.6070000013E-01 ); VERIFY_IS_APPROX(x[3], 3.0000000002E+00 ); VERIFY_IS_APPROX(x[4], 1.5575999998E+00 ); VERIFY_IS_APPROX(x[5], 5.0000000001E+00 ); } struct rat42_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[9] = { 9.000E0, 14.000E0, 21.000E0, 28.000E0, 42.000E0, 57.000E0, 63.000E0, 70.000E0, 79.000E0 }; static const double y[9] = { 8.930E0 ,10.800E0 ,18.590E0 ,22.330E0 ,39.350E0 ,56.110E0 ,61.730E0 ,64.620E0 ,67.080E0 }; int i; assert(m==9); assert(n==3); assert(ldfjac==9); if (iflag != 2) {// compute fvec at b for(i=0; i<9; i++) { fvec[i] = b[0] / (1.+exp(b[1]-b[2]*x[i])) - y[i]; } } else { // compute fjac at b for(i=0; i<9; i++) { double e = exp(b[1]-b[2]*x[i]); fjac[i+ldfjac*0] = 1./(1.+e); fjac[i+ldfjac*1] = -b[0]*e/(1.+e)/(1.+e); fjac[i+ldfjac*2] = +b[0]*e*x[i]/(1.+e)/(1.+e); } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml void testNistRat42(void) { const int m=9, n=3; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 100., 1., 0.1; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 10 == nfev); VERIFY( 8 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 8.0565229338E+00); // check x VERIFY_IS_APPROX(x[0], 7.2462237576E+01); VERIFY_IS_APPROX(x[1], 2.6180768402E+00); VERIFY_IS_APPROX(x[2], 6.7359200066E-02); /* * Second try */ x<< 75., 2.5, 0.07; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 6 == nfev); VERIFY( 5 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 8.0565229338E+00); // check x VERIFY_IS_APPROX(x[0], 7.2462237576E+01); VERIFY_IS_APPROX(x[1], 2.6180768402E+00); VERIFY_IS_APPROX(x[2], 6.7359200066E-02); } struct MGH10_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[16] = { 5.000000E+01, 5.500000E+01, 6.000000E+01, 6.500000E+01, 7.000000E+01, 7.500000E+01, 8.000000E+01, 8.500000E+01, 9.000000E+01, 9.500000E+01, 1.000000E+02, 1.050000E+02, 1.100000E+02, 1.150000E+02, 1.200000E+02, 1.250000E+02 }; static const double y[16] = { 3.478000E+04, 2.861000E+04, 2.365000E+04, 1.963000E+04, 1.637000E+04, 1.372000E+04, 1.154000E+04, 9.744000E+03, 8.261000E+03, 7.030000E+03, 6.005000E+03, 5.147000E+03, 4.427000E+03, 3.820000E+03, 3.307000E+03, 2.872000E+03 }; int i; assert(m==16); assert(n==3); assert(ldfjac==16); if (iflag != 2) {// compute fvec at b for(i=0; i<16; i++) { fvec[i] = b[0] * exp(b[1]/(x[i]+b[2])) - y[i]; } } else { // compute fjac at b for(i=0; i<16; i++) { double factor = 1./(x[i]+b[2]); double e = exp(b[1]*factor); fjac[i+ldfjac*0] = e; fjac[i+ldfjac*1] = b[0]*factor*e; fjac[i+ldfjac*2] = -b[1]*b[0]*factor*factor*e; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml void testNistMGH10(void) { const int m=16, n=3; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 2., 400000., 25000.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 2 == info); VERIFY( 285 == nfev); VERIFY( 250 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7945855171E+01); // check x VERIFY_IS_APPROX(x[0], 5.6096364710E-03); VERIFY_IS_APPROX(x[1], 6.1813463463E+03); VERIFY_IS_APPROX(x[2], 3.4522363462E+02); /* * Second try */ x<< 0.02, 4000., 250.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 2 == info); VERIFY( 126 == nfev); VERIFY( 116 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7945855171E+01); // check x VERIFY_IS_APPROX(x[0], 5.6096364710E-03); VERIFY_IS_APPROX(x[1], 6.1813463463E+03); VERIFY_IS_APPROX(x[2], 3.4522363462E+02); } struct BoxBOD_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[6] = { 1., 2., 3., 5., 7., 10. }; static const double y[6] = { 109., 149., 149., 191., 213., 224. }; int i; assert(m==6); assert(n==2); assert(ldfjac==6); if (iflag != 2) {// compute fvec at b for(i=0; i<6; i++) { fvec[i] = b[0]*(1.-exp(-b[1]*x[i])) - y[i]; } } else { // compute fjac at b for(i=0; i<6; i++) { double e = exp(-b[1]*x[i]); fjac[i+ldfjac*0] = 1.-e; fjac[i+ldfjac*1] = b[0]*x[i]*e; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml void testNistBoxBOD(void) { const int m=6, n=2; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 1., 1.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 10., 400, 1E6*epsilon(), 1E6*epsilon()); // check return value VERIFY( 1 == info); VERIFY( 31 == nfev); VERIFY( 25 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.1680088766E+03); // check x VERIFY_IS_APPROX(x[0], 2.1380940889E+02); VERIFY_IS_APPROX(x[1], 5.4723748542E-01); /* * Second try */ x<< 100., 0.75; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 14000, epsilon(), epsilon()); // check return value VERIFY( 1 == info); VERIFY( 15 == nfev); VERIFY( 14 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.1680088766E+03); // check x VERIFY_IS_APPROX(x[0], 2.1380940889E+02); VERIFY_IS_APPROX(x[1], 5.4723748542E-01); } struct MGH17_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[33] = { 0.000000E+00, 1.000000E+01, 2.000000E+01, 3.000000E+01, 4.000000E+01, 5.000000E+01, 6.000000E+01, 7.000000E+01, 8.000000E+01, 9.000000E+01, 1.000000E+02, 1.100000E+02, 1.200000E+02, 1.300000E+02, 1.400000E+02, 1.500000E+02, 1.600000E+02, 1.700000E+02, 1.800000E+02, 1.900000E+02, 2.000000E+02, 2.100000E+02, 2.200000E+02, 2.300000E+02, 2.400000E+02, 2.500000E+02, 2.600000E+02, 2.700000E+02, 2.800000E+02, 2.900000E+02, 3.000000E+02, 3.100000E+02, 3.200000E+02 }; static const double y[33] = { 8.440000E-01, 9.080000E-01, 9.320000E-01, 9.360000E-01, 9.250000E-01, 9.080000E-01, 8.810000E-01, 8.500000E-01, 8.180000E-01, 7.840000E-01, 7.510000E-01, 7.180000E-01, 6.850000E-01, 6.580000E-01, 6.280000E-01, 6.030000E-01, 5.800000E-01, 5.580000E-01, 5.380000E-01, 5.220000E-01, 5.060000E-01, 4.900000E-01, 4.780000E-01, 4.670000E-01, 4.570000E-01, 4.480000E-01, 4.380000E-01, 4.310000E-01, 4.240000E-01, 4.200000E-01, 4.140000E-01, 4.110000E-01, 4.060000E-01 }; int i; assert(m==33); assert(n==5); assert(ldfjac==33); if (iflag != 2) {// compute fvec at b for(i=0; i<33; i++) { fvec[i] = b[0] + b[1]*exp(-b[3]*x[i]) + b[2]*exp(-b[4]*x[i]) - y[i]; } } else { // compute fjac at b for(i=0; i<33; i++) { fjac[i+ldfjac*0] = 1.; fjac[i+ldfjac*1] = exp(-b[3]*x[i]); fjac[i+ldfjac*2] = exp(-b[4]*x[i]); fjac[i+ldfjac*3] = -x[i]*b[1]*exp(-b[3]*x[i]); fjac[i+ldfjac*4] = -x[i]*b[2]*exp(-b[4]*x[i]); } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml void testNistMGH17(void) { const int m=33, n=5; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; #if 1 /* * First try */ x<< 50., 150., -100., 1., 2.; // do the computation info = ei_lmder( x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 5000, epsilon(), epsilon()); // check return value VERIFY( 2 == info); VERIFY( 604 == nfev); VERIFY( 545 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.4648946975E-05); // check x VERIFY_IS_APPROX(x[0], 3.7541005211E-01); VERIFY_IS_APPROX(x[1], 1.9358469127E+00); VERIFY_IS_APPROX(x[2], -1.4646871366E+00); VERIFY_IS_APPROX(x[3], 1.2867534640E-02); VERIFY_IS_APPROX(x[4], 2.2122699662E-02); #endif /* * Second try */ x<< 0.5 ,1.5 ,-1 ,0.01 ,0.02; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 18 == nfev); VERIFY( 15 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.4648946975E-05); // check x VERIFY_IS_APPROX(x[0], 3.7541005211E-01); VERIFY_IS_APPROX(x[1], 1.9358469127E+00); VERIFY_IS_APPROX(x[2], -1.4646871366E+00); VERIFY_IS_APPROX(x[3], 1.2867534640E-02); VERIFY_IS_APPROX(x[4], 2.2122699662E-02); } struct MGH09_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double _x[11] = { 4., 2., 1., 5.E-1 , 2.5E-01, 1.670000E-01, 1.250000E-01, 1.E-01, 8.330000E-02, 7.140000E-02, 6.250000E-02 }; static const double y[11] = { 1.957000E-01, 1.947000E-01, 1.735000E-01, 1.600000E-01, 8.440000E-02, 6.270000E-02, 4.560000E-02, 3.420000E-02, 3.230000E-02, 2.350000E-02, 2.460000E-02 }; int i; assert(m==11); assert(n==4); assert(ldfjac==11); if (iflag != 2) {// compute fvec at b for(i=0; i<11; i++) { double x = _x[i], xx=x*x; fvec[i] = b[0]*(xx+x*b[1])/(xx+x*b[2]+b[3]) - y[i]; } } else { // compute fjac at b for(i=0; i<11; i++) { double x = _x[i], xx=x*x; double factor = 1./(xx+x*b[2]+b[3]); fjac[i+ldfjac*0] = (xx+x*b[1]) * factor; fjac[i+ldfjac*1] = b[0]*x* factor; fjac[i+ldfjac*2] = - b[0]*(xx+x*b[1]) * x * factor * factor; fjac[i+ldfjac*3] = - b[0]*(xx+x*b[1]) * factor * factor; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml void testNistMGH09(void) { const int m=11, n=4; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 25., 39, 41.5, 39.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 5000); // 1, 100., 5000, epsilon(), epsilon()); // check return value VERIFY( 1 == info); VERIFY( 503== nfev); VERIFY( 385 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 3.0750560385E-04); // check x VERIFY_IS_APPROX(x[0], 0.19280624); // should be 1.9280693458E-01 VERIFY_IS_APPROX(x[1], 0.19129774); // should be 1.9128232873E-01 VERIFY_IS_APPROX(x[2], 0.12305940); // should be 1.2305650693E-01 VERIFY_IS_APPROX(x[3], 0.13606946); // should be 1.3606233068E-01 /* * Second try */ x<< 0.25, 0.39, 0.415, 0.39; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 18 == nfev); VERIFY( 16 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 3.0750560385E-04); // check x VERIFY_IS_APPROX(x[0], 0.19280781); // should be 1.9280693458E-01 VERIFY_IS_APPROX(x[1], 0.19126265); // should be 1.9128232873E-01 VERIFY_IS_APPROX(x[2], 0.12305280); // should be 1.2305650693E-01 VERIFY_IS_APPROX(x[3], 0.13605322); // should be 1.3606233068E-01 } struct Bennett5_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[154] = { 7.447168E0, 8.102586E0, 8.452547E0, 8.711278E0, 8.916774E0, 9.087155E0, 9.232590E0, 9.359535E0, 9.472166E0, 9.573384E0, 9.665293E0, 9.749461E0, 9.827092E0, 9.899128E0, 9.966321E0, 10.029280E0, 10.088510E0, 10.144430E0, 10.197380E0, 10.247670E0, 10.295560E0, 10.341250E0, 10.384950E0, 10.426820E0, 10.467000E0, 10.505640E0, 10.542830E0, 10.578690E0, 10.613310E0, 10.646780E0, 10.679150E0, 10.710520E0, 10.740920E0, 10.770440E0, 10.799100E0, 10.826970E0, 10.854080E0, 10.880470E0, 10.906190E0, 10.931260E0, 10.955720E0, 10.979590E0, 11.002910E0, 11.025700E0, 11.047980E0, 11.069770E0, 11.091100E0, 11.111980E0, 11.132440E0, 11.152480E0, 11.172130E0, 11.191410E0, 11.210310E0, 11.228870E0, 11.247090E0, 11.264980E0, 11.282560E0, 11.299840E0, 11.316820E0, 11.333520E0, 11.349940E0, 11.366100E0, 11.382000E0, 11.397660E0, 11.413070E0, 11.428240E0, 11.443200E0, 11.457930E0, 11.472440E0, 11.486750E0, 11.500860E0, 11.514770E0, 11.528490E0, 11.542020E0, 11.555380E0, 11.568550E0, 11.581560E0, 11.594420E0, 11.607121E0, 11.619640E0, 11.632000E0, 11.644210E0, 11.656280E0, 11.668200E0, 11.679980E0, 11.691620E0, 11.703130E0, 11.714510E0, 11.725760E0, 11.736880E0, 11.747890E0, 11.758780E0, 11.769550E0, 11.780200E0, 11.790730E0, 11.801160E0, 11.811480E0, 11.821700E0, 11.831810E0, 11.841820E0, 11.851730E0, 11.861550E0, 11.871270E0, 11.880890E0, 11.890420E0, 11.899870E0, 11.909220E0, 11.918490E0, 11.927680E0, 11.936780E0, 11.945790E0, 11.954730E0, 11.963590E0, 11.972370E0, 11.981070E0, 11.989700E0, 11.998260E0, 12.006740E0, 12.015150E0, 12.023490E0, 12.031760E0, 12.039970E0, 12.048100E0, 12.056170E0, 12.064180E0, 12.072120E0, 12.080010E0, 12.087820E0, 12.095580E0, 12.103280E0, 12.110920E0, 12.118500E0, 12.126030E0, 12.133500E0, 12.140910E0, 12.148270E0, 12.155570E0, 12.162830E0, 12.170030E0, 12.177170E0, 12.184270E0, 12.191320E0, 12.198320E0, 12.205270E0, 12.212170E0, 12.219030E0, 12.225840E0, 12.232600E0, 12.239320E0, 12.245990E0, 12.252620E0, 12.259200E0, 12.265750E0, 12.272240E0 }; static const double y[154] = { -34.834702E0 ,-34.393200E0 ,-34.152901E0 ,-33.979099E0 ,-33.845901E0 ,-33.732899E0 ,-33.640301E0 ,-33.559200E0 ,-33.486801E0 ,-33.423100E0 ,-33.365101E0 ,-33.313000E0 ,-33.260899E0 ,-33.217400E0 ,-33.176899E0 ,-33.139198E0 ,-33.101601E0 ,-33.066799E0 ,-33.035000E0 ,-33.003101E0 ,-32.971298E0 ,-32.942299E0 ,-32.916302E0 ,-32.890202E0 ,-32.864101E0 ,-32.841000E0 ,-32.817799E0 ,-32.797501E0 ,-32.774300E0 ,-32.757000E0 ,-32.733799E0 ,-32.716400E0 ,-32.699100E0 ,-32.678799E0 ,-32.661400E0 ,-32.644001E0 ,-32.626701E0 ,-32.612202E0 ,-32.597698E0 ,-32.583199E0 ,-32.568699E0 ,-32.554298E0 ,-32.539799E0 ,-32.525299E0 ,-32.510799E0 ,-32.499199E0 ,-32.487598E0 ,-32.473202E0 ,-32.461601E0 ,-32.435501E0 ,-32.435501E0 ,-32.426800E0 ,-32.412300E0 ,-32.400799E0 ,-32.392101E0 ,-32.380501E0 ,-32.366001E0 ,-32.357300E0 ,-32.348598E0 ,-32.339901E0 ,-32.328400E0 ,-32.319698E0 ,-32.311001E0 ,-32.299400E0 ,-32.290699E0 ,-32.282001E0 ,-32.273300E0 ,-32.264599E0 ,-32.256001E0 ,-32.247299E0 ,-32.238602E0 ,-32.229900E0 ,-32.224098E0 ,-32.215401E0 ,-32.203800E0 ,-32.198002E0 ,-32.189400E0 ,-32.183601E0 ,-32.174900E0 ,-32.169102E0 ,-32.163300E0 ,-32.154598E0 ,-32.145901E0 ,-32.140099E0 ,-32.131401E0 ,-32.125599E0 ,-32.119801E0 ,-32.111198E0 ,-32.105400E0 ,-32.096699E0 ,-32.090900E0 ,-32.088001E0 ,-32.079300E0 ,-32.073502E0 ,-32.067699E0 ,-32.061901E0 ,-32.056099E0 ,-32.050301E0 ,-32.044498E0 ,-32.038799E0 ,-32.033001E0 ,-32.027199E0 ,-32.024300E0 ,-32.018501E0 ,-32.012699E0 ,-32.004002E0 ,-32.001099E0 ,-31.995300E0 ,-31.989500E0 ,-31.983700E0 ,-31.977900E0 ,-31.972099E0 ,-31.969299E0 ,-31.963501E0 ,-31.957701E0 ,-31.951900E0 ,-31.946100E0 ,-31.940300E0 ,-31.937401E0 ,-31.931601E0 ,-31.925800E0 ,-31.922899E0 ,-31.917101E0 ,-31.911301E0 ,-31.908400E0 ,-31.902599E0 ,-31.896900E0 ,-31.893999E0 ,-31.888201E0 ,-31.885300E0 ,-31.882401E0 ,-31.876600E0 ,-31.873699E0 ,-31.867901E0 ,-31.862101E0 ,-31.859200E0 ,-31.856300E0 ,-31.850500E0 ,-31.844700E0 ,-31.841801E0 ,-31.838900E0 ,-31.833099E0 ,-31.830200E0 ,-31.827299E0 ,-31.821600E0 ,-31.818701E0 ,-31.812901E0 ,-31.809999E0 ,-31.807100E0 ,-31.801300E0 ,-31.798401E0 ,-31.795500E0 ,-31.789700E0 ,-31.786800E0 }; int i; assert(m==154); assert(n==3); assert(ldfjac==154); if (iflag != 2) {// compute fvec at b for(i=0; i<154; i++) { fvec[i] = b[0]* pow(b[1]+x[i],-1./b[2]) - y[i]; } } else { // compute fjac at b for(i=0; i<154; i++) { double e = pow(b[1]+x[i],-1./b[2]); fjac[i+ldfjac*0] = e; fjac[i+ldfjac*1] = - b[0]*e/b[2]/(b[1]+x[i]); fjac[i+ldfjac*2] = b[0]*e*log(b[1]+x[i])/b[2]/b[2]; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml void testNistBennett5(void) { const int m=154, n=3; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< -2000., 50., 0.8; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 5000); // check return value VERIFY( 1 == info); VERIFY( 758 == nfev); VERIFY( 744 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.2404744073E-04); // check x VERIFY_IS_APPROX(x[0], -2.5235058043E+03); VERIFY_IS_APPROX(x[1], 4.6736564644E+01); VERIFY_IS_APPROX(x[2], 9.3218483193E-01); /* * Second try */ x<< -1500., 45., 0.85; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 203 == nfev); VERIFY( 192 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.2404744073E-04); // check x VERIFY_IS_APPROX(x[0], -2523.3007865); // should be -2.5235058043E+03 VERIFY_IS_APPROX(x[1], 46.735705771); // should be 4.6736564644E+01); VERIFY_IS_APPROX(x[2], 0.93219881891); // should be 9.3218483193E-01); } struct thurber_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double _x[37] = { -3.067E0, -2.981E0, -2.921E0, -2.912E0, -2.840E0, -2.797E0, -2.702E0, -2.699E0, -2.633E0, -2.481E0, -2.363E0, -2.322E0, -1.501E0, -1.460E0, -1.274E0, -1.212E0, -1.100E0, -1.046E0, -0.915E0, -0.714E0, -0.566E0, -0.545E0, -0.400E0, -0.309E0, -0.109E0, -0.103E0, 0.010E0, 0.119E0, 0.377E0, 0.790E0, 0.963E0, 1.006E0, 1.115E0, 1.572E0, 1.841E0, 2.047E0, 2.200E0 }; static const double _y[37] = { 80.574E0, 84.248E0, 87.264E0, 87.195E0, 89.076E0, 89.608E0, 89.868E0, 90.101E0, 92.405E0, 95.854E0, 100.696E0, 101.060E0, 401.672E0, 390.724E0, 567.534E0, 635.316E0, 733.054E0, 759.087E0, 894.206E0, 990.785E0, 1090.109E0, 1080.914E0, 1122.643E0, 1178.351E0, 1260.531E0, 1273.514E0, 1288.339E0, 1327.543E0, 1353.863E0, 1414.509E0, 1425.208E0, 1421.384E0, 1442.962E0, 1464.350E0, 1468.705E0, 1447.894E0, 1457.628E0}; int i; // static int called=0; printf("call hahn1_functor with iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++; assert(m==37); assert(n==7); assert(ldfjac==37); if (iflag != 2) {// compute fvec at x for(i=0; i<37; i++) { double x=_x[i], xx=x*x, xxx=xx*x; fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i]; } } else { // compute fjac at x for(i=0; i<37; i++) { double x=_x[i], xx=x*x, xxx=xx*x; double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx); fjac[i+ldfjac*0] = 1.*fact; fjac[i+ldfjac*1] = x*fact; fjac[i+ldfjac*2] = xx*fact; fjac[i+ldfjac*3] = xxx*fact; fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact; fjac[i+ldfjac*4] = x*fact; fjac[i+ldfjac*5] = xx*fact; fjac[i+ldfjac*6] = xxx*fact; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml void testNistThurber(void) { const int m=37, n=7; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 1000 ,1000 ,400 ,40 ,0.7,0.3,0.0 ; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 400, 1.E4*epsilon(), 1.E4*epsilon()); // check return value VERIFY( 1 == info); VERIFY( 39 == nfev); VERIFY( 36== njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6427082397E+03); // check x VERIFY_IS_APPROX(x[0], 1.2881396800E+03); VERIFY_IS_APPROX(x[1], 1.4910792535E+03); VERIFY_IS_APPROX(x[2], 5.8323836877E+02); VERIFY_IS_APPROX(x[3], 7.5416644291E+01); VERIFY_IS_APPROX(x[4], 9.6629502864E-01); VERIFY_IS_APPROX(x[5], 3.9797285797E-01); VERIFY_IS_APPROX(x[6], 4.9727297349E-02); /* * Second try */ x<< 1300 ,1500 ,500 ,75 ,1 ,0.4 ,0.05 ; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 400, 1.E4*epsilon(), 1.E4*epsilon()); // check return value VERIFY( 1 == info); VERIFY( 29 == nfev); VERIFY( 28 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 5.6427082397E+03); // check x VERIFY_IS_APPROX(x[0], 1.2881396800E+03); VERIFY_IS_APPROX(x[1], 1.4910792535E+03); VERIFY_IS_APPROX(x[2], 5.8323836877E+02); VERIFY_IS_APPROX(x[3], 7.5416644291E+01); VERIFY_IS_APPROX(x[4], 9.6629502864E-01); VERIFY_IS_APPROX(x[5], 3.9797285797E-01); VERIFY_IS_APPROX(x[6], 4.9727297349E-02); } struct rat43_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[15] = { 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. }; static const double y[15] = { 16.08, 33.83, 65.80, 97.20, 191.55, 326.20, 386.87, 520.53, 590.03, 651.92, 724.93, 699.56, 689.96, 637.56, 717.41 }; int i; assert(m==15); assert(n==4); assert(ldfjac==15); if (iflag != 2) {// compute fvec at b for(i=0; i<15; i++) { fvec[i] = b[0] * pow(1.+exp(b[1]-b[2]*x[i]),-1./b[3]) - y[i]; } } else { // compute fjac at b for(i=0; i<15; i++) { double e = exp(b[1]-b[2]*x[i]); double power = -1./b[3]; fjac[i+ldfjac*0] = pow(1.+e, power); fjac[i+ldfjac*1] = power*b[0]*e*pow(1.+e, power-1.); fjac[i+ldfjac*2] = -power*b[0]*e*x[i]*pow(1.+e, power-1.); fjac[i+ldfjac*3] = b[0]*power*power*log(1.+e)*pow(1.+e, power); } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml void testNistRat43(void) { const int m=15, n=4; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 100., 10., 1., 1.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 400, 1.E6*epsilon(), 1.E6*epsilon()); // check return value VERIFY( 1 == info); VERIFY( 27 == nfev); VERIFY( 20 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7864049080E+03); // check x VERIFY_IS_APPROX(x[0], 6.9964151270E+02); VERIFY_IS_APPROX(x[1], 5.2771253025E+00); VERIFY_IS_APPROX(x[2], 7.5962938329E-01); VERIFY_IS_APPROX(x[3], 1.2792483859E+00); /* * Second try */ x<< 700., 5., 0.75, 1.3; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag, 1, 100., 400, 1.E5*epsilon(), 1.E5*epsilon()); // check return value VERIFY( 1 == info); VERIFY( 9 == nfev); VERIFY( 8 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 8.7864049080E+03); // check x VERIFY_IS_APPROX(x[0], 6.9964151270E+02); VERIFY_IS_APPROX(x[1], 5.2771253025E+00); VERIFY_IS_APPROX(x[2], 7.5962938329E-01); VERIFY_IS_APPROX(x[3], 1.2792483859E+00); } struct eckerle4_functor { static int f(void * /*p*/, int m, int n, const double *b, double *fvec, double *fjac, int ldfjac, int iflag) { static const double x[35] = { 400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0}; static const double y[35] = { 0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710 }; int i; assert(m==35); assert(n==3); assert(ldfjac==35); if (iflag != 2) {// compute fvec at b for(i=0; i<35; i++) { fvec[i] = b[0]/b[1] * exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/(b[1]*b[1])) - y[i]; } } else { // compute fjac at b for(i=0; i<35; i++) { double b12 = b[1]*b[1]; double e = exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/b12); fjac[i+ldfjac*0] = e / b[1]; fjac[i+ldfjac*1] = ((x[i]-b[2])*(x[i]-b[2])/b12-1.) * b[0]*e/b12; fjac[i+ldfjac*2] = (x[i]-b[2])*e*b[0]/b[1]/b12; } } return 0; } }; // http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml void testNistEckerle4(void) { const int m=35, n=3; int info, nfev=0, njev=0; VectorXd x(n), fvec(m), diag; MatrixXd fjac; VectorXi ipvt; /* * First try */ x<< 1., 10., 500.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 18 == nfev); VERIFY( 15 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.4635887487E-03); // check x VERIFY_IS_APPROX(x[0], 1.5543827178); VERIFY_IS_APPROX(x[1], 4.0888321754); VERIFY_IS_APPROX(x[2], 4.5154121844E+02); /* * Second try */ x<< 1.5, 5., 450.; // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, diag); // check return value VERIFY( 1 == info); VERIFY( 7 == nfev); VERIFY( 6 == njev); // check norm^2 VERIFY_IS_APPROX(fvec.squaredNorm(), 1.4635887487E-03); // check x VERIFY_IS_APPROX(x[0], 1.5543827178); VERIFY_IS_APPROX(x[1], 4.0888321754); VERIFY_IS_APPROX(x[2], 4.5154121844E+02); } void test_NonLinear() { // Tests using the examples provided by (c)minpack CALL_SUBTEST(testChkder()); CALL_SUBTEST(testLmder1()); CALL_SUBTEST(testLmder()); CALL_SUBTEST(testHybrj1()); CALL_SUBTEST(testHybrj()); CALL_SUBTEST(testHybrd1()); CALL_SUBTEST(testHybrd()); CALL_SUBTEST(testLmstr1()); CALL_SUBTEST(testLmstr()); CALL_SUBTEST(testLmdif1()); CALL_SUBTEST(testLmdif()); // NIST tests, level of difficulty = "Lower" CALL_SUBTEST(testNistMisra1a()); CALL_SUBTEST(testNistChwirut2()); // NIST tests, level of difficulty = "Average" CALL_SUBTEST(testNistHahn1()); CALL_SUBTEST(testNistMisra1d()); CALL_SUBTEST(testNistMGH17()); CALL_SUBTEST(testNistLanczos1()); // NIST tests, level of difficulty = "Higher" CALL_SUBTEST(testNistRat42()); CALL_SUBTEST(testNistMGH10()); CALL_SUBTEST(testNistBoxBOD()); CALL_SUBTEST(testNistMGH09()); CALL_SUBTEST(testNistBennett5()); CALL_SUBTEST(testNistThurber()); CALL_SUBTEST(testNistRat43()); CALL_SUBTEST(testNistEckerle4()); } /* * Can be useful for debugging... printf("info, nfev, njev : %d, %d, %d\n", info, nfev, njev); printf("x[0] : %.32g\n", x[0]); printf("x[1] : %.32g\n", x[1]); printf("x[2] : %.32g\n", x[2]); printf("x[3] : %.32g\n", x[3]); printf("fvec.squaredNorm() : %.32g\n", fvec.squaredNorm()); */