// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void product_extra(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::FloatingPoint FloatingPoint; typedef Matrix RowVectorType; typedef Matrix ColVectorType; typedef Matrix OtherMajorMatrixType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); OtherMajorMatrixType tm1 = m1; Scalar s1 = ei_random(), s2 = ei_random(), s3 = ei_random(); // int c0 = ei_random(0,cols/2-1), // c1 = ei_random(cols/2,cols), // r0 = ei_random(0,rows/2-1), // r1 = ei_random(rows/2,rows); VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint() * s1).eval() * (s3 * m2).eval()); VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(), (-m1*s2).eval() * (s1*m2.adjoint()).eval()); // a very tricky case where a scale factor has to be automatically conjugated: VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); // test all possible conjugate combinations for the four matrix-vector product cases: VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); // test the vector-matrix product with non aligned starts int i = ei_random(0,m1.rows()-2); int j = ei_random(0,m1.cols()-2); int r = ei_random(1,m1.rows()-i); int c = ei_random(1,m1.cols()-j); int i2 = ei_random(0,m1.rows()-1); int j2 = ei_random(0,m1.cols()-1); VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); } void test_product_extra() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST1( product_extra(MatrixXf(ei_random(2,320), ei_random(2,320))) ); CALL_SUBTEST2( product_extra(MatrixXcf(ei_random(50,50), ei_random(50,50))) ); CALL_SUBTEST3( product_extra(Matrix,Dynamic,Dynamic,RowMajor>(ei_random(2,50), ei_random(2,50))) ); } }